metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[{μ2-1,2-bis­­[4-(3-pyrid­yl)pyrimidin-2-ylsulfan­yl]ethane}di-μ2-cyanido-dicopper(I)]

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 12 April 2008; accepted 5 May 2008; online 7 June 2008)

The asymmetric unit of the title complex, [Cu2(CN)2(C20H16N6S2)]n, contains one CuI cation, one cyanide ligand and half of a centrosymmetric 1,2-bis­[4-(3-pyrid­yl)pyrimidin-2-ylsulfan­yl]ethane (bppe) ligand. The CuI atom displays a trigonal coordination geometry, being surrounded by one C atom from one cyanide anion and two N atoms from one cyanide and one bppe ligand. In the complex, each cyanide anion links two CuI atoms in a bis-monodentate mode into a zigzag [–Cu—CN–]n chain. Two parallel chains are linked by bppe ligands into a ladder chain.

Related literature

For related literature, see: Awaleh et al. (2005[Awaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem. 44, 7833-7845.]); Bu et al. (2003[Bu, X.-H., Xie, Y.-B., Li, J.-R. & Zhang, R.-H. (2003). Inorg. Chem. 42, 7422-7430.]); Chen et al. (2003[Chen, C.-L., Su, C.-Y., Cai, Y.-P., Zhang, H.-X., Xu, A.-W., Kang, B.-S. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 3738-3750.]); Su et al. (2000[Su, C.-Y., Liao, S., Zhu, H.-L., Kang, B.-S., Chen, X.-M. & Liu, H.-Q. (2000). Dalton Trans. pp. 1985-1993.]); Xie et al. (2005[Xie, Y.-B., Li, J.-R., Zhang, C. & Bu, X.-H. (2005). Cryst. Growth Des. 5, 1743-1749.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(CN)2(C20H16N6S2)]

  • Mr = 291.81

  • Monoclinic, C 2/c

  • a = 16.025 (4) Å

  • b = 16.296 (7) Å

  • c = 9.3103 (17) Å

  • β = 105.660 (19)°

  • V = 2341.1 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 153 (2) K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.431, Tmax = 0.823

  • 6130 measured reflections

  • 2290 independent reflections

  • 1925 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.09

  • 2290 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been current significant interest in the rational design and synthesis of metal-organic coordination architectures by using flexible bridging units due that the flexibility and conformational freedoms of such ligands offer the possibility for the construction of unprecedented frameworks (Su et al., 2000). Recently, flexible thioethers have been well established ligands in coordination and metallosupramolecular chemistry because of their rich structural information (Awaleh et al., 2005, Bu et al., 2003, Chen et al., 2003, Xie et al., 2005). Herein, we report the crystal structure of the title compound, [Cu2(CN)2(C20H16N6S2)]n, based on a pyridyl dithioether ligand–1,2-bis(4-(pyridinyl-4-)pyrimidin-2-ylthio)ethane. The asymmetric unit of the title complex, contains one CuI cation, one cyano and half a bppe (bppe = 1,2-bis(4-(pyridinyl-4-)pyrimidin -2-ylthio)ethane) ligand. The CuI atom displays a triangular geometry, being surrounded by one carbon atom (Cu1—C11a 1.873 (3) Å) from one cyano anion and two nitrogen atoms from one cyano (Cu1—N4 1.916 (2) Å) and one bppe ligand (Cu1—N3 1.873 (3) Å). In the complex, each cyano aion links two CuI atoms in a bis-monodentate mode into a zigzag (CuCN)n chain. The shortest intrachain Cu—Cu distance is 4.894 (2) Å. Two parallel zigzag chains were linked by bppe ligands into a one-dimensional ladder chain, in which the Cu—Cu distance separated by bppe is 11.648 (3) Å. The ladder chain is stabilized by the intraladder C–H···N hydrogen bonds (C9—N1 2.810 (3) Å; C8—N2 3.398 (4) Å). Finally, the ladder chains were constructed into a three-dimensional supramolecular network by the interladder C10–H···N1c (c = -1/2 + x,1/2 - y,1/2 + z) hydrogen bond with the C···N distance 2.891 (4) Å.

Related literature top

For related literature, see: Awaleh et al. (2005); Bu et al. (2003); Chen et al. (2003); Su et al. (2000); Xie et al. (2005).

Experimental top

A mixture of bppe (0.040 g, 0.1 mmol), CuCN (0.018 g, 0.2 mmol), and water (6 ml) were heated in a 15-ml Teflon-lined vessel at 403 K for 3 days, followed by slow cooling (5 K/hr) to room temperature. After filtration and washing with H2O, colorless needle-like crystals were collected and dried in air (0.019 g, yield ca 32% based on bppe).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Local coordination environment of the title compound with 30% thermal ellipsoids. All the hydrogen atoms are omitted for clarity. Symmetry codes for 1, a: x, -y, 1/2 + z; b: 1 - x, -y,1 - z.
[Figure 2] Fig. 2. The zigzag (CuCN)n chain in the title compound.
[Figure 3] Fig. 3. The one-dimensional ladder chain of the title compound.
Poly[{µ2-1,2-bis[4-(3-pyridyl)pyrimidin-2-ylsulfanyl]ethane}di-µ2- cyanido-dicopper(I)] top
Crystal data top
[Cu2(CN)2(C20H16N6S2)]F(000) = 1176
Mr = 291.81Dx = 1.656 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 765 reflections
a = 16.025 (4) Åθ = 2.5–28.0°
b = 16.296 (7) ŵ = 2.02 mm1
c = 9.3103 (17) ÅT = 153 K
β = 105.660 (19)°Needle-like, colorless
V = 2341.1 (12) Å30.50 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker APEX CCD
diffractometer
2290 independent reflections
Radiation source: fine-focus sealed tube1925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 199
Tmin = 0.431, Tmax = 0.823k = 2019
6130 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.02P]
where P = (Fo2 + 2Fc2)/3
2290 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu2(CN)2(C20H16N6S2)]V = 2341.1 (12) Å3
Mr = 291.81Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.025 (4) ŵ = 2.02 mm1
b = 16.296 (7) ÅT = 153 K
c = 9.3103 (17) Å0.50 × 0.20 × 0.10 mm
β = 105.660 (19)°
Data collection top
Bruker APEX CCD
diffractometer
2290 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1925 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.823Rint = 0.036
6130 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.09Δρmax = 0.41 e Å3
2290 reflectionsΔρmin = 0.32 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.200534 (18)0.046307 (17)0.73287 (3)0.04397 (13)
S10.58681 (4)0.09504 (5)0.45165 (9)0.0681 (2)
N10.46673 (11)0.17752 (12)0.5455 (2)0.0424 (4)
N20.55869 (14)0.25077 (17)0.4267 (2)0.0624 (6)
N30.25417 (11)0.16006 (11)0.71533 (19)0.0379 (4)
N40.18704 (14)0.00114 (12)0.5379 (2)0.0506 (5)
C10.52978 (14)0.18272 (17)0.4778 (3)0.0496 (6)
C20.52069 (18)0.3195 (2)0.4501 (3)0.0661 (8)
H20.53870.36840.41670.079*
C30.45586 (16)0.32250 (16)0.5214 (3)0.0539 (6)
H30.43080.37190.53730.065*
C40.42959 (13)0.24839 (14)0.5686 (2)0.0386 (5)
C50.35930 (13)0.24308 (13)0.6430 (2)0.0355 (5)
C60.33133 (15)0.31071 (14)0.7073 (3)0.0452 (5)
H60.35700.36170.70450.054*
C70.26579 (16)0.30235 (15)0.7749 (3)0.0514 (6)
H70.24610.34750.81740.062*
C80.22945 (14)0.22636 (15)0.7791 (3)0.0442 (5)
H80.18620.22060.82790.053*
C90.31811 (13)0.16915 (13)0.6502 (2)0.0367 (5)
H90.33610.12330.60710.044*
C100.54252 (17)0.01639 (19)0.5480 (3)0.0632 (7)
H10A0.58370.02830.57530.076*
H10B0.53370.03920.63900.076*
C110.18755 (15)0.01827 (14)0.4207 (3)0.0432 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0547 (2)0.0449 (2)0.04047 (19)0.00041 (12)0.02691 (14)0.00271 (11)
S10.0465 (4)0.0949 (6)0.0744 (5)0.0002 (4)0.0360 (3)0.0228 (4)
N10.0357 (10)0.0536 (12)0.0422 (10)0.0013 (8)0.0179 (8)0.0022 (9)
N20.0467 (13)0.0923 (19)0.0555 (14)0.0152 (12)0.0262 (11)0.0025 (12)
N30.0387 (10)0.0410 (10)0.0402 (10)0.0013 (8)0.0212 (8)0.0016 (8)
N40.0740 (14)0.0401 (11)0.0468 (11)0.0020 (10)0.0320 (10)0.0010 (9)
C10.0354 (13)0.0772 (18)0.0396 (12)0.0048 (11)0.0163 (10)0.0068 (12)
C20.0510 (16)0.082 (2)0.0691 (18)0.0173 (15)0.0228 (14)0.0213 (16)
C30.0458 (14)0.0561 (15)0.0623 (16)0.0030 (11)0.0190 (12)0.0152 (12)
C40.0291 (11)0.0495 (13)0.0379 (11)0.0011 (9)0.0101 (9)0.0048 (9)
C50.0325 (11)0.0379 (12)0.0370 (11)0.0017 (8)0.0113 (9)0.0054 (8)
C60.0444 (13)0.0359 (12)0.0571 (14)0.0006 (9)0.0167 (11)0.0006 (10)
C70.0514 (15)0.0442 (14)0.0643 (16)0.0045 (11)0.0253 (12)0.0131 (12)
C80.0409 (13)0.0515 (14)0.0474 (13)0.0023 (10)0.0241 (10)0.0046 (11)
C90.0390 (12)0.0361 (11)0.0401 (11)0.0028 (9)0.0193 (9)0.0003 (9)
C100.0495 (15)0.0784 (19)0.0614 (16)0.0148 (14)0.0144 (12)0.0181 (15)
C110.0614 (15)0.0351 (11)0.0401 (12)0.0082 (10)0.0259 (11)0.0038 (10)
Geometric parameters (Å, º) top
Cu1—C11i1.873 (2)C3—H30.9300
Cu1—N41.916 (2)C4—C51.476 (3)
Cu1—N32.0683 (19)C5—C91.384 (3)
S1—C11.748 (3)C5—C61.385 (3)
S1—C101.815 (3)C6—C71.369 (4)
N1—C11.330 (3)C6—H60.9300
N1—C41.343 (3)C7—C81.374 (3)
N2—C21.321 (4)C7—H70.9300
N2—C11.338 (3)C8—H80.9300
N3—C91.332 (3)C9—H90.9300
N3—C81.343 (3)C10—C10ii1.511 (5)
N4—C111.138 (3)C10—H10A0.9700
C2—C31.376 (4)C10—H10B0.9700
C2—H20.9300C11—Cu1iii1.873 (2)
C3—C41.389 (3)
C11i—Cu1—N4141.12 (9)C9—C5—C6117.2 (2)
C11i—Cu1—N3116.47 (8)C9—C5—C4120.5 (2)
N4—Cu1—N3102.27 (8)C6—C5—C4122.2 (2)
C1—S1—C10102.68 (12)C7—C6—C5119.8 (2)
C1—N1—C4116.6 (2)C7—C6—H6120.1
C2—N2—C1115.1 (2)C5—C6—H6120.1
C9—N3—C8117.83 (19)C6—C7—C8119.1 (2)
C9—N3—Cu1121.50 (14)C6—C7—H7120.4
C8—N3—Cu1120.50 (15)C8—C7—H7120.4
C11—N4—Cu1170.7 (2)N3—C8—C7122.3 (2)
N1—C1—N2127.0 (2)N3—C8—H8118.8
N1—C1—S1120.4 (2)C7—C8—H8118.8
N2—C1—S1112.58 (18)N3—C9—C5123.65 (19)
N2—C2—C3123.5 (3)N3—C9—H9118.2
N2—C2—H2118.3C5—C9—H9118.2
C3—C2—H2118.3C10ii—C10—S1111.6 (3)
C2—C3—C4117.0 (3)C10ii—C10—H10A109.3
C2—C3—H3121.5S1—C10—H10A109.3
C4—C3—H3121.5C10ii—C10—H10B109.3
N1—C4—C3120.8 (2)S1—C10—H10B109.3
N1—C4—C5116.88 (19)H10A—C10—H10B108.0
C3—C4—C5122.3 (2)N4—C11—Cu1iii173.9 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(CN)2(C20H16N6S2)]
Mr291.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)153
a, b, c (Å)16.025 (4), 16.296 (7), 9.3103 (17)
β (°) 105.660 (19)
V3)2341.1 (12)
Z8
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.431, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
6130, 2290, 1925
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.09
No. of reflections2290
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.32

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationAwaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem. 44, 7833–7845.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBu, X.-H., Xie, Y.-B., Li, J.-R. & Zhang, R.-H. (2003). Inorg. Chem. 42, 7422–7430.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, C.-L., Su, C.-Y., Cai, Y.-P., Zhang, H.-X., Xu, A.-W., Kang, B.-S. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 3738–3750.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-Y., Liao, S., Zhu, H.-L., Kang, B.-S., Chen, X.-M. & Liu, H.-Q. (2000). Dalton Trans. pp. 1985–1993.  CrossRef Google Scholar
First citationXie, Y.-B., Li, J.-R., Zhang, C. & Bu, X.-H. (2005). Cryst. Growth Des. 5, 1743–1749.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds