organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9,10-Dihydr­­oxy-4,4-di­methyl-5,8-di­hydro­anthracen-1(4H)-one

aDepartamento de Química Orgánica, Facultad de Ciencias Químicas y Farmaceúticas, Universidad de Chile, Casilla 233, Santiago, Chile, bCentro de Investigación Interdisciplinaria Avanzada en Ciencia de los Materiales, CIMAT, Universidad de Chile, Santiago, Chile, and cLaboratorio de Recursos Naturales, Departamento de Ciencias Químicas, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Av. República 275, Santiago, Chile
*Correspondence e-mail: raraya@uchile.cl

(Received 16 April 2008; accepted 18 April 2008; online 21 June 2008)

In the title mol­ecule, C16H16O3, the ring system is planar and an intramolecular hydrogen bond is present. The mol­ecular packing is dominated by an inter­molecular hydrogen bond and by π-stacking inter­actions [inter­planar separation 3.8012 Å].

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Araya-Maturana et al. (2006[Araya-Maturana, R., Cardona, W., Cassels, B. K., Delgado-Castro, T., Soto-Delgado, J., Pessoa-Mahana, H., Weiss-López, B., Pavani, M. & Ferreira, J. (2006). Bioorg. Med. Chem. 14, 4664-4669.], 2007[Araya-Maturana, R., Rodríguez, J., Olea-Azar, C., Cavieres, C., Norambuena, E., Delgado-Castro, T. & Soto-Delgado, J. (2007). Bioorg. Med. Chem. pp. 7058-7065.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Joshi et al. (1997[Joshi, B. S., Rho, T., Rinaldi, P. L., Liu, W., Wagler, T. A., Newton, M. G., Lee, D. & Pelletier, S. W. (1997). J. Chem. Crystallogr. 27, 553-559.]); Valderrama et al. (1993[Valderrama, J. A., Araya-Maturana, R. & Zuloaga, F. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1103-1107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O3

  • Mr = 256.29

  • Orthorhombic, P n m a

  • a = 8.5944 (5) Å

  • b = 7.6024 (5) Å

  • c = 19.2949 (12) Å

  • V = 1260.69 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • 0.43 × 0.38 × 0.08 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS in SAINT-NT; Bruker, 1999[Bruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.993

  • 7422 measured reflections

  • 1198 independent reflections

  • 948 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.01

  • 1198 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 1.77 2.5172 (18) 147
O3—H3⋯O1i 0.84 2.03 2.8022 (18) 152
Symmetry code: (i) x-1, y, z.

Data collection: SMART-NT (Bruker, 2001[Bruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1999[Bruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Supporting information


Comment top

The title hydroquinone I is a potent antioxidant (Araya-Maturana et al, 2007) and respiration inhibitor of cancer cells (Araya-Maturana et al., 2006). In mouse mammary adenocarcinoma TA3 and their multidrug-resistant variant TA3-MTX-R lines exhibit IC50 values below 10-4M. Moreover, this compound inhibits the growth of the human tumor U937 cell line at low micromolar concentrations (Araya-Maturana et al., 2006).

The molecule consists of three six-membered carbon rings fused trough atoms 4a, 9a in a side and trough carbons 8a, 10a in the other, to give rise an anthracene skeleton, substituted with an oxo, a gem-dimethyl and two hydroxyl groups at positions 1, 4, 9 and 10 respectively, as shown in Scheme 1. The central ring is aromatic, and double bonds are also found between carbons 2 - 3 and 6 - 7. This double bonds distribution leads to the core to be strictly planar. In fact, all the carbon atoms in the skeleton lies on the crystallographic mirror plane m from space group Pnma. The same happens with the oxo oxygen atom O1 and the hydroxyl groups O2 and O3. Interestingly, the hydroxyl hydrogen atoms H2 and H3 display a trans correlation. The planarity of the molecule together with the proximity of the oxo oxygen atom (O1) and the hydroxyl hydrogen atom (H2) leads to the presence of an intramolecular O—H···O hydrogen bond with O···O of 2.5172 (18) Å, suggesting a rather strong bond (Desiraju, 2002), which is present still in CDCl3 solution, as indicated by NMR (Araya-Maturana et al, 2007). Few structures with this or some closely related pattern of substitution could be found in Cambridge Structural database (v 5.29, Allen, 2002), being 1,4-Dihydro-9,10-anthrahydroquinone the best, probably the one to the best of our knowledge, example (Joshi et al., 1997).

The molecular packing is also dominated by the hydrogen bond, this time between vicinal molecules. As depicted in Figure 2, a planar chain is produced by means of the interacion of the "terminal" hydroxyl hydrogen atom H3 with the oxo oxygen O1 from the nearest molecule (x - 1, y, z), in a "head to tail" arrangement in the [100] direction. The O···O distance, 2.8022 (18) Å, suggest a weaker interaction. Layers of molecules are defined in the packing by putting this chains one together the other, with no strong interaction between them. Any of the chain is contained in the x, 1/4, z plane. The next layer, x, 3/4, z is separated from the first in b/2, 3.8012 Å, a typical value for the aromatic π-stacking interaction.

Related literature top

For related literature, see: Allen (2002); Araya-Maturana et al. (2006, 2007); Desiraju (2002); Joshi et al. (1997); Valderrama et al. (1993).

Experimental top

The molecule was synthesized by the Diels–Alder reaction between 8,8-dimethylnaphthalene-1,4,5(8H)-trione and butadiene). The cycloaddition takes place exclusively at external quinone doble bond affording the corresponding adduct I-a (See Scheme 2). Enolization of the adduct I-a with silicagel in toluene yield the hydroquinone I. (Valderrama et al., 1993). The 1H-NMR spectrum in CDCl3 of I exhibits a sharp singlet at 13.08 p.p.m. indicating that hydrogen bonding is also present in solution. This characteristic is important regarding antitumor and antioxidant properties.

Refinement top

The hydrogen atoms positions were calculated after each cycle of refinement with SHELXL (Bruker,1999) using a riding model for each structure, with C—H distances in the range 0.95 to 0.99 Å and O—H equal to 0.84 Å. Uiso(H) values were set equal to 1.5Ueq of the parent carbon atom for methyl groups and hydroxyl hydrogen atoms, while 1.2Ueq for the others.

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure diagramas for I showing atom numbering scheme. Displacement ellipsoids are at 33% probability level and H atoms are shown as spheres of arbitrary radii. Letter a corresponds to the names of fused carbon atoms according to the nomenclature rules. Letter B to symmcode x, -y + 1/2, z.
[Figure 2] Fig. 2. Molecular packing view for I along [010]. [symmetry codes: (B) x + 1, y, z; (C) x - 1, y, z].
[Figure 3] Fig. 3. The formation of the title compound.
9,10-Dihydroxy-4,4-dimethyl-5,8-dihydroanthracen-1(4H)-one top
Crystal data top
C16H16O3F(000) = 544
Mr = 256.29Dx = 1.350 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2361 reflections
a = 8.5944 (5) Åθ = 2.6–25.0°
b = 7.6024 (5) ŵ = 0.09 mm1
c = 19.2949 (12) ÅT = 150 K
V = 1260.69 (14) Å3Plate, orange
Z = 40.43 × 0.38 × 0.08 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1198 independent reflections
Radiation source: fine-focus sealed tube948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 1999)
h = 1010
Tmin = 0.961, Tmax = 0.993k = 99
7422 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0796P)2]
where P = (Fo2 + 2Fc2)/3
1198 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H16O3V = 1260.69 (14) Å3
Mr = 256.29Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.5944 (5) ŵ = 0.09 mm1
b = 7.6024 (5) ÅT = 150 K
c = 19.2949 (12) Å0.43 × 0.38 × 0.08 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1198 independent reflections
Absorption correction: multi-scan
(SADABS in SAINT-NT; Bruker, 1999)
948 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.993Rint = 0.043
7422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
1198 reflectionsΔρmin = 0.29 e Å3
112 parameters
Special details top

Experimental. 10 s by frame separated by 0.3 °

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.23661 (15)0.25000.97450 (7)0.0430 (4)
C11.1134 (2)0.25000.93987 (9)0.0316 (5)
C21.1204 (2)0.25000.86508 (10)0.0394 (5)
H2B1.21880.25000.84270.047*
C30.9915 (2)0.25000.82719 (10)0.0366 (5)
H3A1.00400.25000.77830.044*
C40.8283 (2)0.25000.85428 (9)0.0276 (5)
C110.74913 (15)0.41540 (18)0.82447 (7)0.0319 (4)
H11A0.75430.41230.77370.048*
H11B0.80270.52060.84150.048*
H11C0.64000.41840.83920.048*
C4A0.8227 (2)0.25000.93365 (10)0.0250 (4)
C100.68158 (19)0.25000.96919 (10)0.0257 (5)
O30.54736 (14)0.25000.93053 (6)0.0349 (4)
H30.47000.25000.95710.052*
C10A0.67531 (19)0.25001.04249 (9)0.0246 (5)
C50.5186 (2)0.25001.07767 (10)0.0293 (5)
H5A0.46000.35511.06230.035*0.50
H5B0.46000.14491.06230.035*0.50
C60.5260 (2)0.25001.15519 (10)0.0302 (5)
H6A0.43050.25001.18000.036*
C70.6566 (2)0.25001.19124 (10)0.0299 (5)
H7A0.64950.25001.24040.036*
C80.8143 (2)0.25001.15932 (10)0.0311 (5)
H8A0.87180.14481.17550.037*0.50
H8B0.87180.35521.17550.037*0.50
C8A0.8116 (2)0.25001.08099 (9)0.0252 (4)
C90.9537 (2)0.25001.04619 (9)0.0257 (5)
O21.08404 (15)0.25001.08586 (6)0.0356 (4)
H21.16290.25001.06020.053*
C9A0.9614 (2)0.25000.97343 (10)0.0255 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (7)0.0740 (12)0.0351 (8)0.0000.0021 (6)0.000
C10.0210 (10)0.0430 (12)0.0310 (11)0.0000.0009 (8)0.000
C20.0246 (10)0.0629 (14)0.0306 (12)0.0000.0075 (9)0.000
C30.0322 (11)0.0527 (13)0.0248 (10)0.0000.0037 (8)0.000
C40.0232 (9)0.0384 (12)0.0213 (10)0.0000.0015 (7)0.000
C110.0346 (8)0.0375 (8)0.0237 (7)0.0025 (6)0.0025 (5)0.0023 (6)
C4A0.0230 (10)0.0287 (10)0.0232 (10)0.0000.0008 (7)0.000
C100.0211 (10)0.0313 (11)0.0246 (10)0.0000.0020 (7)0.000
O30.0189 (7)0.0610 (10)0.0247 (7)0.0000.0024 (5)0.000
C10A0.0243 (10)0.0264 (10)0.0233 (10)0.0000.0004 (7)0.000
C50.0226 (10)0.0377 (11)0.0276 (11)0.0000.0003 (7)0.000
C60.0286 (10)0.0335 (11)0.0286 (10)0.0000.0069 (8)0.000
C70.0354 (11)0.0323 (11)0.0221 (10)0.0000.0021 (8)0.000
C80.0291 (10)0.0395 (12)0.0247 (10)0.0000.0036 (8)0.000
C8A0.0262 (10)0.0261 (10)0.0233 (10)0.0000.0012 (7)0.000
C90.0222 (9)0.0307 (11)0.0243 (10)0.0000.0039 (7)0.000
O20.0215 (7)0.0583 (9)0.0271 (8)0.0000.0058 (6)0.000
C9A0.0225 (10)0.0291 (10)0.0248 (10)0.0000.0008 (7)0.000
Geometric parameters (Å, º) top
O1—C11.252 (2)O3—H30.8400
C1—C21.444 (3)C10A—C8A1.387 (2)
C1—C9A1.458 (2)C10A—C51.508 (2)
C2—C31.327 (3)C5—C61.497 (3)
C2—H2B0.9500C5—H5A0.9900
C3—C41.497 (2)C5—H5B0.9900
C3—H3A0.9500C6—C71.320 (3)
C4—C4A1.532 (3)C6—H6A0.9500
C4—C11i1.5410 (16)C7—C81.489 (3)
C4—C111.5410 (16)C7—H7A0.9500
C11—H11A0.9800C8—C8A1.512 (3)
C11—H11B0.9800C8—H8A0.9900
C11—H11C0.9800C8—H8B0.9900
C4A—C101.393 (2)C8A—C91.394 (2)
C4A—C9A1.418 (2)C9—O21.357 (2)
C10—O31.374 (2)C9—C9A1.405 (3)
C10—C10A1.415 (3)O2—H20.8400
O1—C1—C2119.87 (16)C10—C10A—C5118.94 (16)
O1—C1—C9A121.38 (17)C6—C5—C10A114.34 (15)
C2—C1—C9A118.75 (16)C6—C5—H5A108.7
C3—C2—C1121.05 (17)C10A—C5—H5A108.7
C3—C2—H2B119.5C6—C5—H5B108.7
C1—C2—H2B119.5C10A—C5—H5B108.7
C2—C3—C4126.13 (18)H5A—C5—H5B107.6
C2—C3—H3A116.9C7—C6—C5124.20 (17)
C4—C3—H3A116.9C7—C6—H6A117.9
C3—C4—C4A112.24 (15)C5—C6—H6A117.9
C3—C4—C11i106.46 (10)C6—C7—C8123.79 (17)
C4A—C4—C11i111.05 (10)C6—C7—H7A118.1
C3—C4—C11106.46 (10)C8—C7—H7A118.1
C4A—C4—C11111.05 (10)C7—C8—C8A113.53 (15)
C11i—C4—C11109.37 (14)C7—C8—H8A108.9
C4—C11—H11A109.5C8A—C8—H8A108.9
C4—C11—H11B109.5C7—C8—H8B108.9
H11A—C11—H11B109.5C8A—C8—H8B108.9
C4—C11—H11C109.5H8A—C8—H8B107.7
H11A—C11—H11C109.5C10A—C8A—C9118.81 (17)
H11B—C11—H11C109.5C10A—C8A—C8123.28 (16)
C10—C4A—C9A117.74 (17)C9—C8A—C8117.91 (15)
C10—C4A—C4121.29 (15)O2—C9—C8A116.85 (16)
C9A—C4A—C4120.97 (15)O2—C9—C9A121.64 (16)
O3—C10—C4A117.62 (16)C8A—C9—C9A121.50 (16)
O3—C10—C10A120.71 (15)C9—O2—H2109.5
C4A—C10—C10A121.67 (16)C9—C9A—C4A120.08 (16)
C10—O3—H3109.5C9—C9A—C1119.07 (16)
C8A—C10A—C10120.20 (16)C4A—C9A—C1120.86 (16)
C8A—C10A—C5120.86 (17)
C2—C3—C4—C11121.70 (9)C11—C4—C4A—C9A119.04 (10)
C11—C4—C4A—C1060.96 (10)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.772.5172 (18)147
O3—H3···O1ii0.842.032.8022 (18)152
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H16O3
Mr256.29
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)150
a, b, c (Å)8.5944 (5), 7.6024 (5), 19.2949 (12)
V3)1260.69 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.38 × 0.08
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS in SAINT-NT; Bruker, 1999)
Tmin, Tmax0.961, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
7422, 1198, 948
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.01
No. of reflections1198
No. of parameters112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 1999), SHELXTL-NT (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.772.5172 (18)147.2
O3—H3···O1i0.842.032.8022 (18)151.9
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by FONDECYT grant 1071077.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAraya-Maturana, R., Cardona, W., Cassels, B. K., Delgado-Castro, T., Soto-Delgado, J., Pessoa-Mahana, H., Weiss-López, B., Pavani, M. & Ferreira, J. (2006). Bioorg. Med. Chem. 14, 4664-4669.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAraya-Maturana, R., Rodríguez, J., Olea-Azar, C., Cavieres, C., Norambuena, E., Delgado-Castro, T. & Soto-Delgado, J. (2007). Bioorg. Med. Chem. pp. 7058–7065.  Google Scholar
First citationBruker (1999). SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoshi, B. S., Rho, T., Rinaldi, P. L., Liu, W., Wagler, T. A., Newton, M. G., Lee, D. & Pelletier, S. W. (1997). J. Chem. Crystallogr. 27, 553–559.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValderrama, J. A., Araya-Maturana, R. & Zuloaga, F. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1103–1107.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds