organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis[5-(2-pyrid­yl)-1H-tetra­zol-1-yl]propane

aDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: qhzhao@ynu.edu.cn

(Received 23 April 2008; accepted 21 May 2008; online 7 June 2008)

The title compound, C15H14N10, is a multidentate ligand obtained by the reaction of 5-(2-pyrid­yl)tetra­zole with 1,3-dibromo­propane. The mol­ecule consists of two 5-(2-pyrid­yl)-1H-tetra­zol-1-yl units connected by a propyl­ene bridge in a U-like conformation. A twofold rotation axis passes through the central C atom.

Related literature

For related literature, see: Bronisz (2002[Bronisz, R. (2002). Inorg. Chim. Acta, 340, 215-220.]); Gallardo et al. (2004[Gallardo, H., Meyer, E., Bortoluzzi, A. J., Molin, F. & Mangrich, A. S. (2004). Inorg. Chim. Acta. 357, 505-512.]); Meyer et al. (1998[Meyer, E., Zucco, C. & Gallardo, H. (1998). J. Mater. Chem. 8, 1351-1354.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N10

  • Mr = 334.36

  • Monoclinic, C 2/c

  • a = 14.486 (2) Å

  • b = 9.1322 (13) Å

  • c = 12.8032 (19) Å

  • β = 111.596 (2)°

  • V = 1574.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Rigaku Scxmini 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.981

  • 4930 measured reflections

  • 1845 independent reflections

  • 1166 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.02

  • 1845 reflections

  • 115 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tetrazolate anion is an ambident system in which alkylation can occur at the N-1 or N-2 position, the relative proportions of which depend upon the reaction conditions, the nature of the alkylating agent and the influence of the 5-substituent (Meyer et al., 1998; Bronisz, 2002). The crystal structure of one of the three regioisomers has already been published (Gallardo et al., 2004). In our case, no regioselectivity was observed and the three possible regioisomers were isolated in equal amounts.

The structure of the title compound (I) is similar to that observed in the paper (Gallardo et al., 2004) with bond lengths and angles in good agreement with expected values. The molecules of (I) are disposed about a crystallographic two-fold axis of symmetry with symmetrical 5-(2-pyridyl)- 2H-tetrazolyl units connected by a propylene bridge. The molecule is folded at the center of the bridge [C7-C8-C7i 116.1 (2)°; symmetry code (i) = (-x+1,y,-z+1/2)] giving a U-like conformation to the free ligand. The inter-ring dihedral angle Py/Tz is 12.00 (7)°.

Related literature top

For related literature, see: Bronisz (2002); Gallardo et al. (2004); Meyer et al. (1998).

Experimental top

5-(2-Pyridyl)tetrazole, (3.0 g, 20.0 mmol) was dissolved in 25 ml of 2-butanone with stirring and to the solution 1,3-dibromopropane (2.0 g, 10.0 mmol) and K2CO3 (5.5 g, 40.0 mmol) were added. The reaction mixture was heated under reflux for 24 h. After cooling the inorganic materials were filtered off and the solvent was removed under reduced pressure to afford the mixture of isomers. These isomers were separated by column chromatography on silica gel (1:4–2:1 EtOAc/Petroleum ether(60-90°C). The pure compound (I) (334 mg, 1.0 mmol) was dissolved in the solvent (1:1 EtOAc/Petroleum ether), and recrystallized from EtOAc/Petroleum ether affording colorless crystals. .

Refinement top

Positional parameters of all H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with C-H distances in the range 0.93-0.97Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (Symmetry code(A): (-x+1,y,-z+1/2)
1,3-Bis[5-(2-pyridyl)-1H-tetrazol-1-yl]propane top
Crystal data top
C15H14N10F(000) = 696
Mr = 334.36Dx = 1.410 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 14.486 (2) Åθ = 2.7–28.3°
b = 9.1322 (13) ŵ = 0.10 mm1
c = 12.8032 (19) ÅT = 298 K
β = 111.596 (2)°Block, colourless
V = 1574.8 (4) Å30.2 × 0.2 × 0.2 mm
Z = 4
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
1845 independent reflections
Radiation source: fine-focus sealed tube1166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.192 pixels mm-1θmax = 28.3°, θmin = 2.7°
thin–slice ω scansh = 1518
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 712
Tmin = 0.981, Tmax = 0.981l = 1616
4930 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.113P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1845 reflectionsΔρmax = 0.14 e Å3
115 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (5)
Crystal data top
C15H14N10V = 1574.8 (4) Å3
Mr = 334.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.486 (2) ŵ = 0.10 mm1
b = 9.1322 (13) ÅT = 298 K
c = 12.8032 (19) Å0.2 × 0.2 × 0.2 mm
β = 111.596 (2)°
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
1845 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1166 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.981Rint = 0.031
4930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
1845 reflectionsΔρmin = 0.14 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.37119 (12)0.2927 (2)0.15496 (13)0.0542 (5)
H2A0.38110.21700.19820.065*
N20.39676 (9)0.07129 (14)0.09971 (10)0.0372 (3)
N30.40148 (11)0.07629 (15)0.10268 (13)0.0520 (4)
N40.38893 (11)0.11910 (16)0.00162 (14)0.0592 (4)
N50.37593 (11)0.00222 (17)0.06788 (12)0.0527 (4)
C10.36961 (10)0.26606 (18)0.04949 (12)0.0388 (4)
N10.35696 (10)0.37150 (15)0.01654 (10)0.0447 (4)
C30.34557 (13)0.50772 (19)0.02391 (15)0.0517 (5)
H3B0.33800.58260.02150.062*
C40.34441 (14)0.5440 (2)0.12819 (15)0.0579 (5)
H4B0.33490.64040.15330.069*
C50.35767 (15)0.4344 (2)0.19443 (15)0.0642 (6)
H5B0.35750.45560.26550.077*
C60.38094 (11)0.11518 (17)0.00589 (12)0.0382 (4)
C70.40529 (11)0.15178 (18)0.20192 (12)0.0411 (4)
H7A0.40220.08270.25810.049*
H7B0.34910.21770.18510.049*
C80.50000.2392 (2)0.25000.0418 (5)
H8B0.49500.30210.30870.063*0.50
H8A0.50500.30210.19130.063*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0685 (12)0.0581 (13)0.0403 (9)0.0009 (9)0.0250 (8)0.0008 (9)
N20.0384 (7)0.0343 (8)0.0384 (7)0.0012 (6)0.0136 (5)0.0013 (6)
N30.0556 (9)0.0364 (9)0.0627 (10)0.0013 (7)0.0203 (7)0.0003 (7)
N40.0665 (10)0.0428 (9)0.0669 (11)0.0018 (7)0.0228 (8)0.0092 (8)
N50.0594 (9)0.0484 (9)0.0490 (9)0.0014 (7)0.0188 (7)0.0109 (7)
C10.0354 (8)0.0455 (10)0.0342 (8)0.0019 (7)0.0112 (6)0.0013 (7)
N10.0554 (8)0.0395 (8)0.0404 (8)0.0038 (6)0.0192 (6)0.0028 (6)
C30.0619 (11)0.0418 (10)0.0533 (10)0.0044 (8)0.0234 (9)0.0059 (9)
C40.0646 (12)0.0524 (12)0.0590 (11)0.0033 (9)0.0256 (9)0.0179 (10)
C50.0799 (14)0.0731 (15)0.0431 (10)0.0029 (11)0.0269 (9)0.0142 (10)
C60.0369 (8)0.0412 (9)0.0353 (8)0.0003 (7)0.0119 (6)0.0043 (7)
C70.0465 (9)0.0453 (10)0.0342 (8)0.0013 (7)0.0180 (7)0.0021 (7)
C80.0472 (13)0.0396 (13)0.0357 (11)0.0000.0120 (9)0.000
Geometric parameters (Å, º) top
C2—C51.377 (2)C3—C41.370 (2)
C2—C11.381 (2)C3—H3B0.9300
C2—H2A0.9300C4—C51.370 (3)
N2—N31.3493 (18)C4—H4B0.9300
N2—C61.3464 (18)C5—H5B0.9300
N2—C71.4661 (19)C7—C81.5091 (18)
N3—N41.2988 (19)C7—H7A0.9700
N4—N51.358 (2)C7—H7B0.9700
N5—C61.3199 (19)C8—C7i1.5091 (18)
C1—N11.3378 (19)C8—H8B0.9700
C1—C61.473 (2)C8—H8A0.9700
N1—C31.334 (2)
C5—C2—C1118.27 (16)C4—C5—C2119.51 (16)
C5—C2—H2A120.9C4—C5—H5B120.2
C1—C2—H2A120.9C2—C5—H5B120.2
N3—N2—C6108.29 (13)N5—C6—N2108.26 (14)
N3—N2—C7119.27 (12)N5—C6—C1123.92 (14)
C6—N2—C7132.41 (13)N2—C6—C1127.81 (14)
N4—N3—N2106.59 (13)N2—C7—C8113.25 (11)
N3—N4—N5110.55 (14)N2—C7—H7A108.9
C6—N5—N4106.31 (13)C8—C7—H7A108.9
N1—C1—C2123.13 (15)N2—C7—H7B108.9
N1—C1—C6117.12 (13)C8—C7—H7B108.9
C2—C1—C6119.75 (15)H7A—C7—H7B107.7
C3—N1—C1116.87 (14)C7—C8—C7i116.09 (19)
N1—C3—C4124.01 (17)C7—C8—H8B108.3
N1—C3—H3B118.0C7i—C8—H8B108.3
C4—C3—H3B118.0C7—C8—H8A108.3
C5—C4—C3118.19 (17)C7i—C8—H8A108.3
C5—C4—H4B120.9H8B—C8—H8A107.4
C3—C4—H4B120.9
C6—N2—N3—N40.07 (16)N4—N5—C6—C1179.43 (14)
C7—N2—N3—N4178.05 (12)N3—N2—C6—N50.06 (16)
N2—N3—N4—N50.06 (17)C7—N2—C6—N5177.67 (14)
N3—N4—N5—C60.02 (18)N3—N2—C6—C1179.36 (14)
C5—C2—C1—N10.9 (2)C7—N2—C6—C11.8 (2)
C5—C2—C1—C6178.24 (15)N1—C1—C6—N5167.21 (14)
C2—C1—N1—C30.0 (2)C2—C1—C6—N512.0 (2)
C6—C1—N1—C3179.23 (13)N1—C1—C6—N212.1 (2)
C1—N1—C3—C41.2 (2)C2—C1—C6—N2168.64 (14)
N1—C3—C4—C51.3 (3)N3—N2—C7—C8111.61 (15)
C3—C4—C5—C20.3 (3)C6—N2—C7—C871.0 (2)
C1—C2—C5—C40.8 (3)N2—C7—C8—C7i67.96 (10)
N4—N5—C6—N20.02 (17)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N10
Mr334.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)14.486 (2), 9.1322 (13), 12.8032 (19)
β (°) 111.596 (2)
V3)1574.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Scxmini 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.981, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4930, 1845, 1166
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.02
No. of reflections1845
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 20561004), the Key Project of the Chinese Ministry of Education (No. 205147), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060673015) and the Natural Science Foundation of Yunnan Province (Nos. 2004E0008M and 2003RC13).

References

First citationBronisz, R. (2002). Inorg. Chim. Acta, 340, 215–220.  Web of Science CSD CrossRef CAS Google Scholar
First citationGallardo, H., Meyer, E., Bortoluzzi, A. J., Molin, F. & Mangrich, A. S. (2004). Inorg. Chim. Acta. 357, 505–512.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeyer, E., Zucco, C. & Gallardo, H. (1998). J. Mater. Chem. 8, 1351–1354.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds