metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetracarbon­ylbis(η5-cyclo­penta­dien­yl)bis­(di­phenyl­phosphine)dimolybdenum(MoMo) hexane solvate

aDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA
*Correspondence e-mail: dtyler@uoregon.edu

(Received 16 May 2008; accepted 12 June 2008; online 19 June 2008)

The title compound, [Mo2(C5H5)2(C12H11P)2(CO)4]·C6H14, is a centrosymmetric Mo complex in which two Mo atoms are connected by an Mo—Mo bond [3.2072 (12) Å]. Each Mo atom is coordinated by an η5-cyclo­penta­dienyl ligand, two carbonyl ligands and a diphenyl­phosphine ligand in a piano-stool fashion.

Related literature

For related literature, see: Adams et al. (1997[Adams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589-3598.]); Chen et al. (2004[Chen, R., Yoon, M., Smalley, A., Johnson, D. C. & Tyler, D. R. (2004). J. Am. Chem. Soc. 126, 3054-3055.]); Daglen et al. (2007[Daglen, B. C., Harris, J. D. & Tyler, D. R. (2007). J. Inorg. Organomet. Polym. Mater. 17, 267-274.]); Shultz et al. (2008[Shultz, G. V., Berryman, O. B., Zakharov, L. N. & Tyler, D. R. (2008). J. Inorg. Organomet. Polym. Mater. 18, 149-154.]); Tenhaeff & Tyler (1991[Tenhaeff, S. C. & Tyler, D. R. (1991). Organometallics, 10, 473-482.]); Tyler (2003[Tyler, D. R. (2003). Coord. Chem. Rev. 246, 1-2, 291-303.]); Van der Sluis & Spek (1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]); Wilson & Shoemaker (1957[Wilson, F. C. & Shoemaker, D. P. (1957). J. Chem. Phys. 27, 809-810.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C5H5)2(C12H11P)2(CO)4]·C6H14

  • Mr = 892.63

  • Triclinic, [P \overline 1]

  • a = 8.6261 (18) Å

  • b = 9.2910 (19) Å

  • c = 13.697 (3) Å

  • α = 81.893 (4)°

  • β = 71.985 (4)°

  • γ = 73.896 (4)°

  • V = 1001.1 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 173 (2) K

  • 0.15 × 0.07 × 0.01 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.896, Tmax = 0.993

  • 11167 measured reflections

  • 4330 independent reflections

  • 2766 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.152

  • S = 0.95

  • 4330 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −1.09 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We previously reported the synthesis of photodegradable polymers that contain metal-metal bonds along the main chain (Tenhaeff & Tyler, 1991; Tyler, 2003). The metal-metal bond provides a convenient spectroscopic handle for monitoring the effect of external parameters as tensile stress (Chen et al., 2004) and temperature (Daglen et al., 2007) on the rate and onset of polymer backbone degradation. Recent work describes the preparation of phosphine-substituted dimeric molydenum complexes as precursors for step polymerization (Shultz et al., 2008). The title complex [MoCp(CO)2(PPh2H)]2(hexane) was obtained in our attempts to prepare the [MoCp(CO)2(Ph2P(CH2)3CCH)]2 complex for polymerization. Attempts to grow single crystals of the last complex were unsuccessful and instead yielded crystals of the [MoCp(CO)2(PPh2H)]2(hexane). The synthesis of the [MoCp(CO)2(PPh2H)]2 was previously reported (Adams et al., 1997), but the crystal structure has not been determined.

The compound [Mo(CO)2(η5-C5H5)PHPh2]2(C6H14) is a centrosymmetric Mo complex in which two Mo atoms are connected by a Mo—Mo bond. Each Mo atom is coordinated to an η5-cyclopentdienyl ligand, two carbonyl ligands, and a diphenylphosphine ligand in a piano-stool fashion (Fig. 1). The Mo—Mo bond length of 3.2072 (12) Å found in [Mo(CO)2(η5-C5H5)PHPh2]2 is within the range of single Mo—Mo bond lengths found in other related dimeric molybdenum complexes such as [MoCp(CO)2]2 (Wilson & Shoemaker, 1957) and [MoCp(CO)2(Ph2P(CH2)6CHCH2)]2 (Shultz et al., 2008). The solvent hexane molecule in the crystal structure is disordered around an inversion center.

Related literature top

For related literature, see: Adams et al. (1997); Chen et al. (2004); Daglen et al. (2007); Shultz et al. (2008); Tenhaeff & Tyler (1991); Tyler (2003); Van der Sluis & Spek (1990); Wilson & Shoemaker (1957).

Experimental top

The synthesis of [Mo(CO)2(η5-C5H5)PHPh2]2 was carried out by reaction of [CpMo(CO)2]2 with 2 equivalents of phosphine ligand Ph2P(CH2)3CCH, which contained a small amount of Ph2PH, in a diglyme solution at room temperature. Crystals suitable for X-ray analysis were grown by slow cooling in a diglyme/hexanes solution. Although [MoCp(CO)2Ph2P(CH2)3CHδb CH2]2 was the primary product of the reaction, only crystals of [Mo(CO)2(η5-C5H5)PHPh2]2(C6H14) were obtained.

Refinement top

The structure was solved using direct methods and refined with anisotropic thermal parameters for non-H atoms. Position of the H atom coordinated to the P atom was found from the residual density and this H atom was refined with isotropic thermal parameters. Other H atoms were positioned geometrically and refined in a rigid group model, C—H = 1.00 Å (Cp-ring) and 0.95 Å (Ph-rings); Uiso(H) = 1.2Ueq(C).

A highly disordered solvent molecule, most probably C6H14, was found to be present in crystal nearby an inversion center; however our attempts to locate the individual atoms were unsuccessful. Therefore, in order to take into account the contribution of the disordered solvent we applied, the solvent was treated by SQUEEZE technique (Van der Sluis & Spek, 1990). Correction of the X-ray data by SQUEEZE (56 electrons/cell) was close to the required value for one C6H14 molecule per the full unit cell (50 electrons/cell).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of [Mo(CO)2(η5-C5H5)PHPh2]2 with 50% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code (i): -x,-y,-z].
Tetracarbonylbis(η5- cyclopentadienyl)bis(diphenylphosphine)dimolybdenum(Mo—Mo) hexane solvate top
Crystal data top
[Mo2(C5H5)2(C12H11P)2(CO)4]·C6H14Z = 1
Mr = 892.63F(000) = 456
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6261 (18) ÅCell parameters from 882 reflections
b = 9.2910 (19) Åθ = 2.6–17.6°
c = 13.697 (3) ŵ = 0.75 mm1
α = 81.893 (4)°T = 173 K
β = 71.985 (4)°Block, red
γ = 73.896 (4)°0.15 × 0.07 × 0.01 mm
V = 1001.1 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4330 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 1010
Tmin = 0.896, Tmax = 0.993k = 1111
11167 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0637P)2]
where P = (Fo2 + 2Fc2)/3
4330 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 1.06 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
[Mo2(C5H5)2(C12H11P)2(CO)4]·C6H14γ = 73.896 (4)°
Mr = 892.63V = 1001.1 (4) Å3
Triclinic, P1Z = 1
a = 8.6261 (18) ÅMo Kα radiation
b = 9.2910 (19) ŵ = 0.75 mm1
c = 13.697 (3) ÅT = 173 K
α = 81.893 (4)°0.15 × 0.07 × 0.01 mm
β = 71.985 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
2766 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.993Rint = 0.086
11167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.152H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 1.06 e Å3
4330 reflectionsΔρmin = 1.09 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.08453 (7)0.07667 (6)0.06104 (5)0.02499 (19)
P10.2686 (2)0.04682 (18)0.16299 (13)0.0285 (4)
O10.1657 (6)0.0706 (6)0.2330 (4)0.0454 (13)
O20.3623 (6)0.1648 (5)0.0744 (4)0.0397 (12)
C10.0688 (9)0.0224 (8)0.1649 (5)0.0343 (16)
C20.2458 (8)0.0818 (7)0.0233 (5)0.0304 (15)
C30.0039 (10)0.3062 (6)0.0307 (6)0.0365 (18)
H3A0.06490.32050.08410.044*
C40.0793 (9)0.3252 (7)0.0762 (6)0.0415 (19)
H4A0.20280.35700.11100.050*
C50.0493 (9)0.3080 (7)0.1222 (6)0.0372 (18)
H5A0.03350.32720.19510.045*
C60.2038 (10)0.2748 (7)0.0456 (6)0.0375 (17)
H6A0.31640.26770.05480.045*
C70.1708 (10)0.2767 (7)0.0493 (6)0.0401 (18)
H7A0.25620.26730.11830.048*
C80.2740 (9)0.2437 (7)0.2043 (5)0.0333 (16)
C90.3917 (9)0.3568 (8)0.1447 (6)0.0393 (18)
H9A0.47240.33210.08420.047*
C100.3905 (11)0.5048 (8)0.1739 (7)0.051 (2)
H10A0.47100.58220.13340.061*
C110.2754 (11)0.5405 (9)0.2598 (7)0.055 (2)
H11A0.27690.64310.27910.066*
C120.1571 (11)0.4323 (8)0.3193 (6)0.051 (2)
H12A0.07560.45800.37900.061*
C130.1593 (10)0.2850 (8)0.2902 (5)0.0435 (19)
H13A0.07800.20880.33130.052*
C140.2585 (9)0.0315 (7)0.2804 (5)0.0323 (16)
C150.1047 (10)0.0952 (8)0.3460 (5)0.0408 (18)
H15A0.00410.10360.32840.049*
C160.0974 (12)0.1476 (9)0.4391 (6)0.056 (2)
H16A0.00870.18920.48530.067*
C170.2421 (14)0.1391 (9)0.4635 (7)0.063 (3)
H17A0.23700.17520.52630.076*
C180.3954 (13)0.0778 (9)0.3962 (7)0.059 (2)
H18A0.49600.07360.41250.071*
C190.4053 (10)0.0227 (7)0.3057 (6)0.0412 (19)
H19A0.51190.02110.26080.049*
H10.427 (7)0.057 (6)0.119 (4)0.017 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0325 (3)0.0102 (3)0.0349 (3)0.0046 (2)0.0133 (2)0.0028 (2)
P10.0351 (10)0.0174 (9)0.0347 (10)0.0047 (7)0.0128 (8)0.0041 (7)
O10.045 (3)0.049 (3)0.042 (3)0.015 (3)0.011 (3)0.004 (3)
O20.037 (3)0.030 (3)0.047 (3)0.000 (2)0.010 (2)0.011 (2)
C10.031 (4)0.030 (4)0.038 (4)0.000 (3)0.010 (3)0.005 (3)
C20.032 (4)0.028 (4)0.038 (4)0.016 (3)0.013 (3)0.002 (3)
C30.060 (5)0.004 (3)0.051 (5)0.010 (3)0.027 (4)0.007 (3)
C40.036 (4)0.005 (3)0.078 (6)0.002 (3)0.014 (4)0.008 (3)
C50.049 (5)0.011 (3)0.060 (5)0.005 (3)0.025 (4)0.012 (3)
C60.048 (5)0.015 (3)0.055 (5)0.016 (3)0.018 (4)0.001 (3)
C70.061 (5)0.017 (4)0.045 (5)0.014 (3)0.018 (4)0.005 (3)
C80.042 (4)0.022 (4)0.039 (4)0.004 (3)0.021 (3)0.001 (3)
C90.034 (4)0.029 (4)0.060 (5)0.006 (3)0.021 (4)0.005 (3)
C100.058 (5)0.015 (4)0.083 (6)0.006 (4)0.037 (5)0.010 (4)
C110.073 (6)0.026 (4)0.083 (7)0.017 (4)0.048 (6)0.012 (4)
C120.074 (6)0.026 (4)0.054 (5)0.016 (4)0.021 (5)0.007 (4)
C130.059 (5)0.036 (4)0.034 (4)0.012 (4)0.011 (4)0.000 (3)
C140.049 (5)0.011 (3)0.038 (4)0.010 (3)0.013 (3)0.002 (3)
C150.049 (5)0.033 (4)0.040 (4)0.016 (4)0.007 (4)0.002 (3)
C160.088 (7)0.041 (5)0.038 (5)0.025 (5)0.009 (5)0.003 (4)
C170.119 (9)0.041 (5)0.047 (5)0.026 (5)0.043 (6)0.001 (4)
C180.084 (7)0.048 (5)0.061 (6)0.015 (5)0.046 (6)0.002 (4)
C190.061 (5)0.019 (4)0.057 (5)0.012 (3)0.035 (4)0.002 (3)
Geometric parameters (Å, º) top
Mo1—C11.940 (8)C7—H7A1.0000
Mo1—C21.946 (7)C8—C131.369 (9)
Mo1—C62.302 (6)C8—C91.393 (9)
Mo1—C52.324 (6)C9—C101.379 (10)
Mo1—C42.349 (6)C9—H9A0.9500
Mo1—C72.360 (7)C10—C111.353 (11)
Mo1—C32.376 (6)C10—H10A0.9500
Mo1—P12.3866 (18)C11—C121.365 (11)
Mo1—Mo1i3.2072 (12)C11—H11A0.9500
P1—C141.826 (7)C12—C131.374 (10)
P1—C81.829 (7)C12—H12A0.9500
P1—H11.29 (5)C13—H13A0.9500
O1—C11.173 (8)C14—C151.376 (9)
O2—C21.176 (7)C14—C191.391 (9)
C3—C71.401 (10)C15—C161.406 (10)
C3—C41.421 (10)C15—H15A0.9500
C3—H3A1.0000C16—C171.369 (12)
C4—C51.399 (9)C16—H16A0.9500
C4—H4A1.0000C17—C181.378 (12)
C5—C61.404 (10)C17—H17A0.9500
C5—H5A1.0000C18—C191.376 (10)
C6—C71.411 (9)C18—H18A0.9500
C6—H6A1.0000C19—H19A0.9500
C1—Mo1—C2105.4 (3)Mo1—C4—H4A125.8
C1—Mo1—C6138.8 (3)C4—C5—C6108.1 (7)
C2—Mo1—C6109.0 (3)C4—C5—Mo173.5 (4)
C1—Mo1—C5106.1 (3)C6—C5—Mo171.5 (4)
C2—Mo1—C5143.9 (3)C4—C5—H5A125.8
C6—Mo1—C535.3 (2)C6—C5—H5A125.8
C1—Mo1—C499.1 (3)Mo1—C5—H5A125.8
C2—Mo1—C4150.1 (3)C5—C6—C7108.2 (7)
C6—Mo1—C458.4 (3)C5—C6—Mo173.2 (4)
C5—Mo1—C434.8 (2)C7—C6—Mo174.7 (4)
C1—Mo1—C7156.6 (3)C5—C6—H6A125.5
C2—Mo1—C795.6 (3)C7—C6—H6A125.5
C6—Mo1—C735.2 (2)Mo1—C6—H6A125.5
C5—Mo1—C758.3 (3)C3—C7—C6107.9 (7)
C4—Mo1—C757.9 (3)C3—C7—Mo173.4 (4)
C1—Mo1—C3123.8 (3)C6—C7—Mo170.1 (4)
C2—Mo1—C3115.2 (3)C3—C7—H7A126.0
C6—Mo1—C358.1 (2)C6—C7—H7A126.0
C5—Mo1—C358.1 (2)Mo1—C7—H7A126.0
C4—Mo1—C335.0 (2)C13—C8—C9117.9 (7)
C7—Mo1—C334.4 (2)C13—C8—P1122.1 (5)
C1—Mo1—P181.6 (2)C9—C8—P1120.0 (6)
C2—Mo1—P175.99 (19)C10—C9—C8119.7 (7)
C6—Mo1—P185.34 (19)C10—C9—H9A120.1
C5—Mo1—P191.73 (18)C8—C9—H9A120.1
C4—Mo1—P1125.1 (2)C11—C10—C9120.3 (8)
C7—Mo1—P1113.98 (19)C11—C10—H10A119.8
C3—Mo1—P1143.43 (17)C9—C10—H10A119.8
C1—Mo1—Mo1i73.9 (2)C10—C11—C12121.4 (7)
C2—Mo1—Mo1i67.11 (18)C10—C11—H11A119.3
C6—Mo1—Mo1i141.14 (18)C12—C11—H11A119.3
C5—Mo1—Mo1i139.46 (17)C11—C12—C13118.0 (8)
C4—Mo1—Mo1i104.62 (19)C11—C12—H12A121.0
C7—Mo1—Mo1i106.02 (18)C13—C12—H12A121.0
C3—Mo1—Mo1i87.55 (17)C8—C13—C12122.6 (7)
P1—Mo1—Mo1i127.32 (5)C8—C13—H13A118.7
C14—P1—C8102.5 (3)C12—C13—H13A118.7
C14—P1—Mo1121.2 (2)C15—C14—C19119.8 (7)
C8—P1—Mo1117.1 (2)C15—C14—P1119.8 (5)
C14—P1—H196 (2)C19—C14—P1120.3 (6)
C8—P1—H1100 (2)C14—C15—C16119.5 (7)
Mo1—P1—H1116 (2)C14—C15—H15A120.2
O1—C1—Mo1173.7 (6)C16—C15—H15A120.2
O2—C2—Mo1168.9 (5)C17—C16—C15120.5 (8)
C7—C3—C4107.8 (7)C17—C16—H16A119.8
C7—C3—Mo172.2 (4)C15—C16—H16A119.8
C4—C3—Mo171.4 (4)C16—C17—C18119.3 (8)
C7—C3—H3A126.0C16—C17—H17A120.3
C4—C3—H3A126.0C18—C17—H17A120.3
Mo1—C3—H3A126.0C19—C18—C17121.2 (8)
C5—C4—C3108.0 (7)C19—C18—H18A119.4
C5—C4—Mo171.6 (4)C17—C18—H18A119.4
C3—C4—Mo173.5 (4)C18—C19—C14119.7 (8)
C5—C4—H4A125.8C18—C19—H19A120.2
C3—C4—H4A125.8C14—C19—H19A120.2
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Mo2(C5H5)2(C12H11P)2(CO)4]·C6H14
Mr892.63
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.6261 (18), 9.2910 (19), 13.697 (3)
α, β, γ (°)81.893 (4), 71.985 (4), 73.896 (4)
V3)1001.1 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.15 × 0.07 × 0.01
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.896, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
11167, 4330, 2766
Rint0.086
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.152, 0.95
No. of reflections4330
No. of parameters212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.06, 1.09

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the NSF for funding.

References

First citationAdams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589–3598.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, R., Yoon, M., Smalley, A., Johnson, D. C. & Tyler, D. R. (2004). J. Am. Chem. Soc. 126, 3054–3055.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDaglen, B. C., Harris, J. D. & Tyler, D. R. (2007). J. Inorg. Organomet. Polym. Mater. 17, 267–274.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShultz, G. V., Berryman, O. B., Zakharov, L. N. & Tyler, D. R. (2008). J. Inorg. Organomet. Polym. Mater. 18, 149–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationTenhaeff, S. C. & Tyler, D. R. (1991). Organometallics, 10, 473–482.  CrossRef CAS Web of Science Google Scholar
First citationTyler, D. R. (2003). Coord. Chem. Rev. 246, 1–2, 291–303.  Google Scholar
First citationWilson, F. C. & Shoemaker, D. P. (1957). J. Chem. Phys. 27, 809–810.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds