organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Tri­cyclo[3.3.1.13,7]dec-2-ylamino)ethanol hemihydrate

aSchool of Chemistry, University of KwaZulu-Natal, Durban, 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban, 4000, South Africa
*Correspondence e-mail: govenderthav@ukzn.ac.za

(Received 19 May 2008; accepted 3 June 2008; online 7 June 2008)

The title adamantane derivative, C12H21NO·0.5H2O, was synthesized as part of an investigation into the biological activities of cage amino–alcohol compounds as potential anti-tuberculosis agents. The structure displays inter­molecular O—H⋯N, N—H⋯O, O—H⋯O hydrogen bonding and a layered packing structure with distinct hydro­philic and hydro­phobic regions. The water molecule lies on a twofold rotation axis.

Related literature

For related literature, see: Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); du Pont de Nemours and Co. (1969[du Pont de Nemours, E. I., and Co. (1969). Patent No. GB 1 157 143 19 690 702.]); Lee et al. (2003[Lee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172-187.]); Tripathi et al. (2006[Tripathi, R. P., Saxena, N., Tiwari, V. K., Verma, S. S., Chaturvedi, V., Manju, Y. K., Srivastva, A. K., Gaikwad, A. & Sinha, S. (2006). Bioorg. Med. Chem. 14, 8186-8196.]).

[Scheme 1]

Experimental

Crystal data
  • C12H21NO·0.5H2O

  • Mr = 204.31

  • Monoclinic, C 2/c

  • a = 11.6739 (3) Å

  • b = 6.5043 (2) Å

  • c = 28.6241 (7) Å

  • β = 99.8620 (10)°

  • V = 2141.33 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 (2) K

  • 0.56 × 0.43 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 13147 measured reflections

  • 2584 independent reflections

  • 2352 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.112

  • S = 1.07

  • 2584 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N1i 0.84 1.86 2.7007 (12) 175
N1—H1B⋯O1Wii 0.849 (16) 2.398 (16) 3.2241 (12) 164.6 (14)
O1W—H1W⋯O1iii 0.863 (16) 1.963 (17) 2.8147 (12) 168.7 (16)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) [-x+2, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, an adamantane derivative, was synthesized as part of an ongoing study to evaluate the biological activity of such compounds as potential anti-tuberculosis agents (Bogatcheva et al. (2006), Lee et al. (2003), Tripathi et al. (2006)). Although the compound is known (du Pont de Nemours and Co.; 1969), its crystal structure has not been reported.

The compound contains a polycyclic (lipophilic) hydrocarbon region, polar amine and hydroxyl units, and crystallizes with half a water molecule in the asymmetric unit (Fig.1)- the water molecule being situated on a crystallographic 2-fold axis at (1, y, 3/4). The title molecule exhibits several C–C bond lengths in the adamantane skeleton that deviate from the expected value of 1.54 Å. This has been observed previously and is typical for these types of compounds.

The structure exhibits intermolecular hydrogen bonding between O1 and N1 of adjacent molecules as well as between O1 and O1W of the water molecule (Fig. 2). There is also a complex network of short contacts between the molecules in structure. These intermolecular interactions result in a layered structure with distinct hydrophilic and hydrophobic regions (Fig. 3). The adamantane skeleton forms the hydrophobic layer while the polar hydroxyl and amino moeties constitute the hydrophilic region.

Related literature top

For related literature, see: Bogatcheva et al. (2006); du Pont de Nemours and Co. (1969); Lee et al. (2003); Tripathi et al. (2006).

Experimental top

A mixture of 2-adamantanone (2 g, 13 mmol) and 2-aminoethanol (1 g, 16 mmol) in 20 ml of methanol was stirred under dinitrogen atmosphere at room temperature for 2 h. The mixture was cooled to zero degrees using an external ice bath after with NaBH4 (1 g, 26 mmol) was added slowly over a 30 minutes. The mixture was stirred for overnight at room temperature after which it was concentrated in vacuo and excess NaBH4 was quenched by adding 40 ml of 10% HCl and the product was also extracted as its HCl salt in the process. The aqueous solution was washed with 2x20ml of dichloromethane, after which the aqueous layer was basified (pH 12) with NH4OH and the product was extracted from the mixture with dichloromethane (2x30ml), the solvent was dried over Na2SO4 and concentrated in vacuo. The product was recrystallized from dichloromethane, thereby affording pure 2-aminoethanol adamantane (2 g, 77% yield).

Refinement top

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL. With the exception to H1B and H1W, all hydrogen atoms were first located in the difference map then positioned geometrically, and allowed to ride on their respective parent atoms, with bond lengths of 0.99 Å (CH2), 1.00 Å (Methine CH) or 0.84 Å (OH). Isotropic displacement parameters for these atoms were set equal to 1.2 (CH2 and CH), or 1.5 OH) times Ueq of the parent atom. Atoms H1B and H1W were located in the difference map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The ORTEP (Farrugia, 1997) diagram of the title compound showing the displacement ellipsoids for non-hydrogen atoms at the 50% probability level.
[Figure 2] Fig. 2. Figure depicting the intermolecular hydrogen bonding.
[Figure 3] Fig. 3. Packing diagram depicting layered structure as seen down the b-axis.
2-(Tricyclo[3.3.1.13,7]dec-2-ylamino)ethanol hemihydrate top
Crystal data top
C12H21NO·0.5H2OF(000) = 904
Mr = 204.31Dx = 1.267 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7587 reflections
a = 11.6739 (3) Åθ = 2.9–28.3°
b = 6.5043 (2) ŵ = 0.08 mm1
c = 28.6241 (7) ÅT = 173 K
β = 99.862 (1)°Plate, colourless
V = 2141.33 (10) Å30.56 × 0.43 × 0.18 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2352 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 28.0°, θmin = 1.4°
phi and ω scansh = 1515
13147 measured reflectionsk = 88
2584 independent reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0507P)2 + 1.5961P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H21NO·0.5H2OV = 2141.33 (10) Å3
Mr = 204.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.6739 (3) ŵ = 0.08 mm1
b = 6.5043 (2) ÅT = 173 K
c = 28.6241 (7) Å0.56 × 0.43 × 0.18 mm
β = 99.862 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2352 reflections with I > 2σ(I)
13147 measured reflectionsRint = 0.058
2584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.39 e Å3
2584 reflectionsΔρmin = 0.19 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.76341 (9)0.06132 (17)0.61221 (4)0.0189 (2)
H10.68990.09460.62410.023*
C20.81420 (9)0.13986 (16)0.63482 (3)0.0156 (2)
H20.75820.25200.62290.019*
C30.92859 (10)0.18681 (17)0.61700 (4)0.0181 (2)
H30.96350.31620.63210.022*
C41.01487 (10)0.00885 (18)0.62888 (4)0.0205 (2)
H4A1.08800.04110.61730.025*
H4B1.03340.00960.66370.025*
C50.96251 (10)0.18982 (17)0.60569 (4)0.0208 (2)
H51.01890.30540.61370.025*
C60.93562 (11)0.16124 (19)0.55178 (4)0.0243 (3)
H6A1.00820.13010.53960.029*
H6B0.90230.28960.53660.029*
C70.84905 (11)0.01531 (19)0.53962 (4)0.0240 (3)
H70.83130.03380.50440.029*
C80.73704 (10)0.0346 (2)0.55821 (4)0.0250 (3)
H8A0.70250.16270.54330.030*
H8B0.68020.07810.54990.030*
C90.85024 (10)0.23740 (17)0.62443 (4)0.0208 (2)
H9A0.81590.36680.61010.025*
H9B0.86770.25610.65930.025*
C100.90159 (11)0.21388 (18)0.56282 (4)0.0241 (3)
H10A0.84620.32880.55460.029*
H10B0.97390.24750.55070.029*
C110.83975 (9)0.33596 (16)0.70953 (4)0.0170 (2)
H11A0.77280.42580.69730.020*
H11B0.91090.40070.70180.020*
C120.85067 (10)0.31373 (16)0.76292 (4)0.0186 (2)
H12A0.77700.25870.77060.022*
H12B0.91320.21410.77450.022*
N10.82297 (8)0.13298 (14)0.68680 (3)0.0156 (2)
O10.87618 (7)0.50454 (12)0.78653 (3)0.01947 (19)
H1C0.81670.54770.79630.029*
O1W1.00000.82045 (19)0.75000.0240 (3)
H1B0.8774 (13)0.053 (2)0.6990 (5)0.024 (4)*
H1W1.0445 (14)0.737 (3)0.7380 (6)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0192 (5)0.0197 (5)0.0178 (5)0.0041 (4)0.0030 (4)0.0029 (4)
C20.0175 (5)0.0146 (5)0.0146 (5)0.0007 (4)0.0027 (4)0.0003 (4)
C30.0224 (5)0.0155 (5)0.0172 (5)0.0032 (4)0.0059 (4)0.0004 (4)
C40.0178 (5)0.0236 (6)0.0200 (5)0.0000 (4)0.0033 (4)0.0024 (4)
C50.0247 (6)0.0180 (5)0.0198 (5)0.0045 (4)0.0038 (4)0.0010 (4)
C60.0310 (6)0.0236 (6)0.0193 (5)0.0008 (5)0.0072 (4)0.0046 (4)
C70.0313 (6)0.0265 (6)0.0138 (5)0.0015 (5)0.0030 (4)0.0010 (4)
C80.0245 (6)0.0296 (6)0.0188 (5)0.0003 (5)0.0023 (4)0.0036 (4)
C90.0300 (6)0.0137 (5)0.0189 (5)0.0029 (4)0.0048 (4)0.0006 (4)
C100.0339 (6)0.0206 (6)0.0195 (5)0.0004 (5)0.0092 (4)0.0040 (4)
C110.0207 (5)0.0133 (5)0.0170 (5)0.0003 (4)0.0033 (4)0.0009 (4)
C120.0239 (5)0.0151 (5)0.0172 (5)0.0006 (4)0.0049 (4)0.0010 (4)
N10.0189 (4)0.0131 (4)0.0149 (4)0.0008 (3)0.0033 (3)0.0003 (3)
O10.0195 (4)0.0188 (4)0.0208 (4)0.0012 (3)0.0054 (3)0.0058 (3)
O1W0.0293 (6)0.0175 (6)0.0259 (6)0.0000.0064 (5)0.000
Geometric parameters (Å, º) top
C1—C91.5297 (16)C7—C81.5287 (17)
C1—C81.5334 (15)C7—C101.5316 (17)
C1—C21.5334 (14)C7—H71.0000
C1—H11.0000C8—H8A0.9900
C2—N11.4745 (12)C8—H8B0.9900
C2—C31.5395 (15)C9—H9A0.9900
C2—H21.0000C9—H9B0.9900
C3—C41.5339 (15)C10—H10A0.9900
C3—C101.5388 (15)C10—H10B0.9900
C3—H31.0000C11—N11.4700 (13)
C4—C51.5314 (16)C11—C121.5187 (14)
C4—H4A0.9900C11—H11A0.9900
C4—H4B0.9900C11—H11B0.9900
C5—C91.5305 (16)C12—O11.4200 (13)
C5—C61.5324 (15)C12—H12A0.9900
C5—H51.0000C12—H12B0.9900
C6—C71.5299 (17)N1—H1B0.849 (16)
C6—H6A0.9900O1—H1C0.8400
C6—H6B0.9900O1W—H1W0.863 (16)
C9—C1—C8109.03 (9)C6—C7—C10109.54 (10)
C9—C1—C2110.44 (9)C8—C7—H7109.5
C8—C1—C2108.97 (9)C6—C7—H7109.5
C9—C1—H1109.5C10—C7—H7109.5
C8—C1—H1109.5C7—C8—C1109.82 (9)
C2—C1—H1109.5C7—C8—H8A109.7
N1—C2—C1110.79 (8)C1—C8—H8A109.7
N1—C2—C3115.22 (8)C7—C8—H8B109.7
C1—C2—C3108.91 (8)C1—C8—H8B109.7
N1—C2—H2107.2H8A—C8—H8B108.2
C1—C2—H2107.2C1—C9—C5110.01 (9)
C3—C2—H2107.2C1—C9—H9A109.7
C4—C3—C10108.86 (9)C5—C9—H9A109.7
C4—C3—C2110.53 (9)C1—C9—H9B109.7
C10—C3—C2108.48 (9)C5—C9—H9B109.7
C4—C3—H3109.6H9A—C9—H9B108.2
C10—C3—H3109.6C7—C10—C3109.77 (9)
C2—C3—H3109.6C7—C10—H10A109.7
C5—C4—C3110.03 (9)C3—C10—H10A109.7
C5—C4—H4A109.7C7—C10—H10B109.7
C3—C4—H4A109.7C3—C10—H10B109.7
C5—C4—H4B109.7H10A—C10—H10B108.2
C3—C4—H4B109.7N1—C11—C12109.98 (8)
H4A—C4—H4B108.2N1—C11—H11A109.7
C9—C5—C4108.72 (9)C12—C11—H11A109.7
C9—C5—C6109.72 (9)N1—C11—H11B109.7
C4—C5—C6109.38 (9)C12—C11—H11B109.7
C9—C5—H5109.7H11A—C11—H11B108.2
C4—C5—H5109.7O1—C12—C11111.73 (8)
C6—C5—H5109.7O1—C12—H12A109.3
C7—C6—C5109.49 (9)C11—C12—H12A109.3
C7—C6—H6A109.8O1—C12—H12B109.3
C5—C6—H6A109.8C11—C12—H12B109.3
C7—C6—H6B109.8H12A—C12—H12B107.9
C5—C6—H6B109.8C11—N1—C2113.60 (8)
H6A—C6—H6B108.2C11—N1—H1B109.6 (10)
C8—C7—C6109.42 (10)C2—N1—H1B110.6 (10)
C8—C7—C10109.34 (10)C12—O1—H1C109.5
C9—C1—C2—N169.54 (11)C6—C7—C8—C160.43 (12)
C8—C1—C2—N1170.72 (9)C10—C7—C8—C159.53 (12)
C9—C1—C2—C358.18 (11)C9—C1—C8—C760.00 (12)
C8—C1—C2—C361.56 (11)C2—C1—C8—C760.61 (12)
N1—C2—C3—C467.40 (11)C8—C1—C9—C559.43 (11)
C1—C2—C3—C457.78 (11)C2—C1—C9—C560.27 (11)
N1—C2—C3—C10173.32 (9)C4—C5—C9—C160.16 (11)
C1—C2—C3—C1061.50 (11)C6—C5—C9—C159.42 (11)
C10—C3—C4—C559.70 (12)C8—C7—C10—C359.75 (12)
C2—C3—C4—C559.36 (11)C6—C7—C10—C360.14 (12)
C3—C4—C5—C959.71 (11)C4—C3—C10—C759.61 (12)
C3—C4—C5—C660.09 (12)C2—C3—C10—C760.72 (12)
C9—C5—C6—C759.30 (12)N1—C11—C12—O1175.36 (9)
C4—C5—C6—C759.87 (12)C12—C11—N1—C2178.67 (8)
C5—C6—C7—C859.80 (12)C1—C2—N1—C11164.04 (9)
C5—C6—C7—C1060.05 (12)C3—C2—N1—C1171.76 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N1i0.841.862.7007 (12)175
N1—H1B···O1Wii0.849 (16)2.398 (16)3.2241 (12)164.6 (14)
O1W—H1W···O1iii0.863 (16)1.963 (17)2.8147 (12)168.7 (16)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x, y1, z; (iii) x+2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H21NO·0.5H2O
Mr204.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)11.6739 (3), 6.5043 (2), 28.6241 (7)
β (°) 99.862 (1)
V3)2141.33 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.56 × 0.43 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13147, 2584, 2352
Rint0.058
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.112, 1.07
No. of reflections2584
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 1999), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N1i0.841.862.7007 (12)175
N1—H1B···O1Wii0.849 (16)2.398 (16)3.2241 (12)164.6 (14)
O1W—H1W···O1iii0.863 (16)1.963 (17)2.8147 (12)168.7 (16)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x, y1, z; (iii) x+2, y, z+3/2.
 

Acknowledgements

We thank Dr Manuel Fernandes of the Jan Boeyens Structural Chemistry Laboratory at the University of the Witwatersrand for his assistance in the acquisition of the crystallographic data. This work was supported by grants from the National Research Foundation (South Africa), GUN 2046819, the University of KwaZulu–Natal and Aspen Pharmacare.

References

First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SAINT-Plus (includes XPREP and SADABS). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationdu Pont de Nemours, E. I., and Co. (1969). Patent No. GB 1 157 143 19 690 702.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, R. E., Protopopova, M., Crooks, E., Slayden, R. A., Terrot, M. & Barry, C. E. (2003). J. Comb. Chem. 5, 172–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, R. P., Saxena, N., Tiwari, V. K., Verma, S. S., Chaturvedi, V., Manju, Y. K., Srivastva, A. K., Gaikwad, A. & Sinha, S. (2006). Bioorg. Med. Chem. 14, 8186–8196.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds