organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[(Z)-2-cyano­imino-1,3-thiazolidin-3-yl]acetate

aHenan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: bingxie_2008@yahoo.cn

(Received 23 May 2008; accepted 24 May 2008; online 7 June 2008)

In the title mol­ecule, C8H11N3O2S, the puckering amplitude of the thia­zolidine ring is q2 = 0.3011 (5) Å and the conformation is an envelope. There are weak inter­molecular C—H⋯O inter­actions which stabilize the crystal structure.

Related literature

For the crystal structures of related compounds, see: Dai et al. (2007[Dai, H., Zhang, X., Qin, X., Qin, Z.-F. & Fang, J.-X. (2007). Acta Cryst. E63, o4283.]). For details of the biological activities of thia­zolidine-containing compounds, see: Iwata et al. (1988[Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, 3, 261-262.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering amplitude definitions, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For conformation definitions, see: Duax et al. (1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271-383. New York: John Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C8H11N3O2S

  • Mr = 213.26

  • Monoclinic, C 2/c

  • a = 30.862 (6) Å

  • b = 4.9376 (10) Å

  • c = 14.067 (3) Å

  • β = 105.09 (3)°

  • V = 2069.7 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 (2) K

  • 0.34 × 0.21 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.907, Tmax = 0.958

  • 7488 measured reflections

  • 1826 independent reflections

  • 1491 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.117

  • S = 1.10

  • 1826 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2C⋯O2i 0.97 2.56 3.284 (3) 132
C4—H4B⋯O2ii 0.97 2.50 3.431 (3) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolidine is an important kind of group in organic chemistry. Many compounds containing Thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988). Here, we report the crystal structure of (I).

In (I) (Fig. 1), all bond lengths are normal (Allen et al., 1987) and in a good agreement with those reported previously (Dai et al., 2007). The plane I (C7/C8/N1–N3/S1) makes the dihedral angles of 86.11 (3)° with ethyl acetate group (C1–C4/O1/O2). The Cremer & Pople (1975) puckering amplitude of the thiazolidine ring is q2 = 0.3011 (5) Å. According to Duax et al. (1976), the conformation is an envelope with a local pseudo-mirror passing through C6 and the mid-point of the N1—C7 bond. There are some weak C—H···O intermolecular interactions (see Table 1) which stabilize the title structure.

Related literature top

For the crystal structures of related compounds, see: Dai et al. (2007). For details of the biological activities of thiazolidine-containing compounds, see: Iwata et al. (1988). For bond-length data, see: Allen et al. (1987). For puckering amplitude definitions, see: Cremer & Pople (1975). For conformation definitions, see: Duax et al. (1976).

Experimental top

A solution of (Z)-(thiazolidin-2-ylideneamino)formonitrile 1.27 g (10 mmol) and sodium hydride 0.3 g dissolved in anhydrous acetonitrile (20 ml), and dropwise added over a period of 10 min to a solution of ethyl 2-chloroacetate 1.23 (10 mmol) in acetonitrile (10 ml) at 273 K. The mixture was stirred at 353 K for 3 h. The solvent was removed and the residue was purified by recrystall from ethanol to give I as a white solid (1.92 g, 90%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 or 0.97 Å, with Uiso(H) = 1.2 times Ueq(C) and 1.5 times Ueq(C) for the methyl H atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.
Ethyl 2-[(Z)-2-cyanoimino-1,3-thiazolidin-3-yl]acetate top
Crystal data top
C8H11N3O2SF(000) = 896
Mr = 213.26Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1021 reflections
a = 30.862 (6) Åθ = 2.9–26.4°
b = 4.9376 (10) ŵ = 0.29 mm1
c = 14.067 (3) ÅT = 293 K
β = 105.09 (3)°Block, colourless
V = 2069.7 (7) Å30.34 × 0.21 × 0.15 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1826 independent reflections
Radiation source: rotating anode1491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω oscillation scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3636
Tmin = 0.907, Tmax = 0.958k = 55
7488 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0531P)2 + 1.3476P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1826 reflectionsΔρmax = 0.25 e Å3
128 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 20018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (9)
Crystal data top
C8H11N3O2SV = 2069.7 (7) Å3
Mr = 213.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.862 (6) ŵ = 0.29 mm1
b = 4.9376 (10) ÅT = 293 K
c = 14.067 (3) Å0.34 × 0.21 × 0.15 mm
β = 105.09 (3)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
1826 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1491 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.958Rint = 0.045
7488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.10Δρmax = 0.25 e Å3
1826 reflectionsΔρmin = 0.31 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.462350 (18)0.24900 (11)0.03972 (4)0.0520 (2)
O10.27777 (5)0.6328 (3)0.12161 (13)0.0627 (5)
O20.31720 (5)0.3188 (3)0.02097 (14)0.0670 (5)
N10.39666 (6)0.5821 (3)0.01316 (12)0.0453 (4)
N20.40242 (6)0.2991 (4)0.13944 (13)0.0514 (5)
N30.44256 (9)0.0586 (5)0.20421 (18)0.0847 (7)
C10.19858 (10)0.6384 (8)0.1823 (3)0.0959 (10)
H1A0.17120.54570.18280.144*
H1B0.20170.65070.24830.144*
H1C0.19790.81730.15590.144*
C20.23648 (8)0.4890 (6)0.1212 (2)0.0781 (8)
H2B0.23730.30740.14710.094*
H2C0.23350.47510.05450.094*
C30.31533 (7)0.5240 (4)0.06723 (16)0.0498 (5)
C40.35509 (7)0.6959 (4)0.07168 (18)0.0525 (6)
H4A0.35650.71120.13960.063*
H4B0.35130.87650.04790.063*
C50.40994 (8)0.6115 (5)0.09383 (16)0.0553 (6)
H5A0.39040.50600.12350.066*
H5B0.40840.79980.11220.066*
C60.45751 (8)0.5090 (5)0.12722 (15)0.0557 (6)
H6A0.46340.43430.19310.067*
H6B0.47860.65450.12730.067*
C70.41698 (6)0.3814 (4)0.04819 (14)0.0413 (5)
C80.42527 (8)0.1075 (5)0.17063 (16)0.0572 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0464 (4)0.0506 (4)0.0556 (4)0.0037 (2)0.0072 (3)0.0093 (2)
O10.0403 (9)0.0630 (10)0.0806 (11)0.0003 (7)0.0080 (8)0.0119 (9)
O20.0538 (10)0.0559 (10)0.0910 (13)0.0012 (8)0.0182 (9)0.0175 (9)
N10.0406 (10)0.0458 (9)0.0491 (9)0.0004 (7)0.0109 (7)0.0011 (8)
N20.0505 (11)0.0558 (11)0.0465 (10)0.0031 (8)0.0101 (8)0.0021 (8)
N30.109 (2)0.0805 (16)0.0738 (14)0.0062 (15)0.0411 (14)0.0142 (13)
C10.0479 (16)0.121 (3)0.110 (2)0.0012 (17)0.0040 (16)0.013 (2)
C20.0450 (14)0.0844 (18)0.103 (2)0.0084 (13)0.0157 (14)0.0109 (16)
C30.0440 (12)0.0441 (12)0.0618 (13)0.0041 (9)0.0147 (10)0.0015 (10)
C40.0422 (12)0.0447 (11)0.0694 (14)0.0037 (9)0.0121 (10)0.0062 (10)
C50.0601 (14)0.0567 (13)0.0515 (12)0.0083 (11)0.0186 (10)0.0062 (10)
C60.0595 (14)0.0600 (13)0.0433 (11)0.0119 (11)0.0058 (10)0.0036 (10)
C70.0379 (11)0.0413 (11)0.0460 (11)0.0057 (8)0.0128 (8)0.0061 (8)
C80.0664 (16)0.0598 (14)0.0473 (12)0.0082 (12)0.0183 (11)0.0048 (11)
Geometric parameters (Å, º) top
S1—C71.736 (2)C1—H1B0.9600
S1—C61.811 (2)C1—H1C0.9600
O1—C31.325 (3)C2—H2B0.9700
O1—C21.460 (3)C2—H2C0.9700
O2—C31.198 (3)C3—C41.507 (3)
N1—C71.334 (3)C4—H4A0.9700
N1—C41.446 (3)C4—H4B0.9700
N1—C51.460 (3)C5—C61.508 (3)
N2—C71.309 (3)C5—H5A0.9700
N2—C81.322 (3)C5—H5B0.9700
N3—C81.145 (3)C6—H6A0.9700
C1—C21.459 (4)C6—H6B0.9700
C1—H1A0.9600
C7—S1—C691.34 (10)N1—C4—H4A109.3
C3—O1—C2115.73 (19)C3—C4—H4A109.3
C7—N1—C4120.76 (17)N1—C4—H4B109.3
C7—N1—C5114.95 (17)C3—C4—H4B109.3
C4—N1—C5121.17 (18)H4A—C4—H4B108.0
C7—N2—C8118.10 (19)N1—C5—C6106.08 (18)
C2—C1—H1A109.5N1—C5—H5A110.5
C2—C1—H1B109.5C6—C5—H5A110.5
H1A—C1—H1B109.5N1—C5—H5B110.5
C2—C1—H1C109.5C6—C5—H5B110.5
H1A—C1—H1C109.5H5A—C5—H5B108.7
H1B—C1—H1C109.5C5—C6—S1105.78 (15)
C1—C2—O1108.6 (2)C5—C6—H6A110.6
C1—C2—H2B110.0S1—C6—H6A110.6
O1—C2—H2B110.0C5—C6—H6B110.6
C1—C2—H2C110.0S1—C6—H6B110.6
O1—C2—H2C110.0H6A—C6—H6B108.7
H2B—C2—H2C108.4N2—C7—N1121.22 (19)
O2—C3—O1124.6 (2)N2—C7—S1126.07 (17)
O2—C3—C4125.1 (2)N1—C7—S1112.71 (14)
O1—C3—C4110.33 (18)N3—C8—N2174.8 (3)
N1—C4—C3111.65 (18)
C3—O1—C2—C1178.6 (2)C7—S1—C6—C521.72 (16)
C2—O1—C3—O21.4 (3)C8—N2—C7—N1177.09 (19)
C2—O1—C3—C4178.3 (2)C8—N2—C7—S13.9 (3)
C7—N1—C4—C381.0 (2)C4—N1—C7—N26.6 (3)
C5—N1—C4—C378.0 (2)C5—N1—C7—N2166.86 (19)
O2—C3—C4—N10.4 (3)C4—N1—C7—S1172.54 (15)
O1—C3—C4—N1179.87 (18)C5—N1—C7—S112.3 (2)
C7—N1—C5—C628.7 (2)C6—S1—C7—N2174.48 (19)
C4—N1—C5—C6171.18 (17)C6—S1—C7—N16.41 (16)
N1—C5—C6—S130.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···O2i0.972.563.284 (3)132
C4—H4B···O2ii0.972.503.431 (3)162
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H11N3O2S
Mr213.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)30.862 (6), 4.9376 (10), 14.067 (3)
β (°) 105.09 (3)
V3)2069.7 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.34 × 0.21 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.907, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
7488, 1826, 1491
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.117, 1.10
No. of reflections1826
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2C···O2i0.972.563.284 (3)131.7
C4—H4B···O2ii0.972.503.431 (3)161.9
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDai, H., Zhang, X., Qin, X., Qin, Z.-F. & Fang, J.-X. (2007). Acta Cryst. E63, o4283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New York: John Wiley.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katsurada, M. & Imanishi, T. (1988). Synthesis, 3, 261–262.  Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds