organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Methyl-N-(4-meth­oxy­phen­yl)-2-[(E)-(4-methyl­phen­yl)methyl­ene­amino]-4,5,6,7-tetra­hydro­thieno[2,3-c]pyridine-3-carboxamide

aDepartment of Physics, MS Ramaiah Institute of Technology, MSRIT Post, Bangalore 560 054, Karnataka, India, bDepartment of Physics, Bangalore University, Bangalore 560 056, Karnataka, India, and cPES College of Pharmacy, Hanumanthanagar, Bangalore 560 050, Karnataka, India
*Correspondence e-mail: prmkkgroup@gmail.com

(Received 28 May 2008; accepted 8 June 2008; online 13 June 2008)

The molecular structure of the title compound, C24H25N3O2S, is stabilized by intra­molecular N—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds. There are no significant inter­molecular inter­actions.

Related literature

For related literature, see: Gewald et al. (1966[Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 94-100.]); Cohen et al. (1977[Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1332-1334.]); Csaszar & Morvay (1983[Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121-128.]); Lakshmi et al. (1985[Lakshmi, V. V., Sridhar, P. & Polsa, H. (1985). Indian J. Pharm. Sci. 23, 327-336.]); Mohan & Saravanan (2003[Mohan, S. & Saravanan, J. (2003). Asian J. Chem. 15, 67-70.]); Dzhurayev et al. (1992[Dzhurayev, A. D., Karimkulov, K. M., Makshsumov, A. G. & Amanov, N. (1992). Khim. Farm. Zh. 26, 73-75.]); Sebnis et al. (1999[Sebnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333-345.]); Anilkumar et al. (2005[Anilkumar, G. N., Kokila, M. K., Puttaraja, Mohan, S. & Majunath Shetty, K. S. (2005). Acta Cryst. E61, o2841-o2843.]); El-Maghraby, Haroun & Mohamed (1984[El-Maghraby, A. A., Haroun, B. & Mohamed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327-336.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25N3O2S

  • Mr = 419.53

  • Triclinic, [P \overline 1]

  • a = 8.3905 (11) Å

  • b = 9.9883 (13) Å

  • c = 12.9549 (17) Å

  • α = 91.375 (2)°

  • β = 94.789 (3)°

  • γ = 96.121 (2)°

  • V = 1075.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 292 (2) K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 0.967

  • 10653 measured reflections

  • 3967 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.183

  • S = 1.14

  • 3967 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1 0.86 2.12 2.807 (4) 137
C1—H1⋯S1 0.93 2.60 3.051 (4) 110
C16—H16⋯O1 0.93 2.27 2.863 (5) 121

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound (I) was one amongst bicyclic tetrahydropyridinothiophenes (Sebnis et al., 1999), found to exhibit antimicrobial and anti-inflammatory activities. Schiff bases (Csaszar & Morvay, 1983; Lakshmi et al., 1985; Cohen et al., 1977) and their thiophene derivatives (El-Maghraby et al., 1984; Dzhurayev et al., 1992; Gewald et al., 1966) were known for their wide range of biological activities such as antibacterial, antifungal and antitubercular activities. Sulfur containing Schiff bases are particularly effective.(Mohan & Saravanan, 2003).

The bicyclic system exhibits non-planarity, the N—CH3 group shows a significant deviation from the molecular plane. The p-methoxyphenyl ring (C11–C16/O2/C23) and 4- methylphenyl ring (C17–C22/C24) make dihedral angles of 7.7 (2) and 10.2 (3)°, respectively, with thiophene ring. The torsion angles C3—C9—N2—C11 and C2—N1—C1—C17 show the anti conformation of the two units about the C9—N2 and N1—C1 bonds. In (I) (Fig. 1), intramolecular N2—H2···N1 and C16—H16···O1 hydrogen bonds form pseudo-six-membered rings, while the intramolecular C1—H1···S1 hydrogen bond forms a pseudo-fivemembered ring, thus locking the molecular conformation and eliminating conformational flexibility. (Anilkumar et al. 2005). Molecules are arranged in zigzag layers viewed along a axis.(Fig 2).

Related literature top

For related literature, see: Gewald et al. (1966); Cohen et al. (1977); Csaszar & Morvay (1983); Lakshmi et al. (1985); Mohan & Saravanan (2003); Dzhurayev et al. (1992); Sebnis et al. (1999).

For related literature, see: Anilkumar et al. (2005); El-Maghraby, Haroun & Mohamed (1984).

Experimental top

The title compound, (I), was synthesized using the Gewald reaction (Gewald et al., 1966). 4-Methoxyphenyl 2-cyanoacetamide (0.04 mol) was refluxed with N-methylpiperidin-4-one (0.04 mol) in the presence of ammonium acetate (1.00 g) and glacial acetic acid (2 ml) in benzene.This mixture was treated with sulfur (1.28 g, 0.04 mol), dimethylamine (4 ml) and ethanol at 323 K. The product was treated with 4- methyl benzaldehyde in an equimolar ratio in the presence of 2- propanol and a catalytic amount of glacial acetic acid under microwave irradiation, which yielded (I). This was purified and crystallized from N,N-dimethylformamide and ethanol (1:2) by slow evaporation.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 and C— H = 0.93, 0.97 and 0.96 A° for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x =1.5 for methyl H and x = 1.2 for all other H atoms. A rotating group model was used for methyl groups.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme with displacement ellipsiods drawn at the 50% probability level. Dashed lines indicates intramolecular H-bonds.
[Figure 2] Fig. 2. Packing diagram of (I); all H-atoms are omitted for clarity.
6-Methyl-N-(4-methoxyphenyl)-2-[(E)-(4-methylphenyl)methyleneamino]- 4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide top
Crystal data top
C24H25N3O2SZ = 2
Mr = 419.53F(000) = 444
Triclinic, P1Dx = 1.296 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3905 (11) ÅCell parameters from 380 reflections
b = 9.9883 (13) Åθ = 1.6–28.6°
c = 12.9549 (17) ŵ = 0.18 mm1
α = 91.375 (2)°T = 292 K
β = 94.789 (3)°Block, yellow
γ = 96.121 (2)°0.32 × 0.28 × 0.22 mm
V = 1075.2 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3967 independent reflections
Radiation source: fine-focus sealed tube2633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ψ and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.942, Tmax = 0.967k = 1212
10653 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0919P)2 + 0.1278P]
where P = (Fo2 + 2Fc2)/3
3967 reflections(Δ/σ)max = 0.001
274 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C24H25N3O2Sγ = 96.121 (2)°
Mr = 419.53V = 1075.2 (2) Å3
Triclinic, P1Z = 2
a = 8.3905 (11) ÅMo Kα radiation
b = 9.9883 (13) ŵ = 0.18 mm1
c = 12.9549 (17) ÅT = 292 K
α = 91.375 (2)°0.32 × 0.28 × 0.22 mm
β = 94.789 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2633 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.967Rint = 0.051
10653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.14Δρmax = 0.26 e Å3
3967 reflectionsΔρmin = 0.24 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15650 (12)0.11892 (10)0.10349 (7)0.0563 (3)
O10.5787 (3)0.2412 (3)0.3856 (2)0.0713 (9)
O20.9097 (3)0.8527 (2)0.5084 (2)0.0604 (7)
N10.3079 (3)0.3800 (3)0.1240 (2)0.0471 (7)
N20.5036 (4)0.4298 (3)0.3103 (2)0.0523 (8)
H20.43670.45750.26370.063*
N30.2336 (4)0.2086 (3)0.2703 (2)0.0522 (8)
C10.2503 (5)0.4032 (4)0.0322 (3)0.0551 (10)
H10.19490.33170.00780.066*
C20.2865 (4)0.2518 (3)0.1637 (3)0.0442 (9)
C30.3661 (4)0.2116 (3)0.2540 (3)0.0433 (9)
C40.3748 (5)0.0062 (4)0.3650 (3)0.0516 (10)
H4A0.48440.02540.35820.062*
H4B0.37410.04740.42830.062*
C50.2676 (5)0.1373 (4)0.3715 (3)0.0568 (10)
H5A0.31950.19480.42000.068*
H5B0.16700.11850.39760.068*
C60.1331 (5)0.1315 (4)0.2017 (3)0.0556 (10)
H6A0.02660.13390.22590.067*
H6B0.12240.17150.13210.067*
C70.2076 (4)0.0119 (4)0.1999 (3)0.0469 (9)
C80.3183 (4)0.0725 (3)0.2738 (3)0.0415 (8)
C90.4911 (4)0.2950 (4)0.3227 (3)0.0479 (9)
C100.1536 (5)0.3431 (4)0.2811 (3)0.0664 (12)
H10A0.05450.33710.31210.100*
H10B0.22190.39380.32440.100*
H10C0.13150.38740.21410.100*
C110.6118 (4)0.5304 (3)0.3637 (3)0.0460 (9)
C120.6143 (5)0.6609 (4)0.3305 (3)0.0596 (11)
H120.54600.67870.27340.072*
C130.7141 (5)0.7643 (4)0.3789 (3)0.0603 (11)
H130.71380.85080.35380.072*
C140.8163 (4)0.7420 (4)0.4655 (3)0.0466 (9)
C150.8154 (5)0.6133 (4)0.4991 (3)0.0573 (10)
H150.88380.59610.55630.069*
C160.7151 (5)0.5082 (4)0.4498 (3)0.0591 (11)
H160.71660.42160.47450.071*
C170.2670 (4)0.5351 (4)0.0126 (3)0.0493 (9)
C180.1988 (6)0.5521 (4)0.1128 (3)0.0772 (14)
H180.14450.47820.15050.093*
C190.2106 (6)0.6756 (5)0.1563 (3)0.0775 (14)
H190.16400.68380.22330.093*
C200.2889 (4)0.7875 (4)0.1044 (3)0.0535 (10)
C210.3603 (5)0.7708 (4)0.0057 (3)0.0634 (11)
H210.41650.84450.03120.076*
C220.3487 (5)0.6468 (4)0.0379 (3)0.0625 (11)
H220.39820.63840.10400.075*
C231.0176 (5)0.8341 (4)0.5968 (3)0.0619 (11)
H23A0.95800.79530.65080.093*
H23B1.07310.91970.62080.093*
H23C1.09440.77500.57810.093*
C240.2999 (5)0.9248 (4)0.1523 (3)0.0717 (12)
H24A0.28270.91390.22640.108*
H24B0.40450.97180.13370.108*
H24C0.21930.97560.12730.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0607 (7)0.0545 (6)0.0497 (6)0.0002 (5)0.0136 (5)0.0075 (5)
O10.0739 (19)0.0560 (17)0.0772 (19)0.0045 (14)0.0340 (16)0.0122 (14)
O20.0565 (17)0.0483 (16)0.0715 (18)0.0001 (13)0.0165 (14)0.0049 (13)
N10.0499 (18)0.0470 (18)0.0431 (17)0.0026 (14)0.0026 (14)0.0093 (14)
N20.057 (2)0.0468 (19)0.0492 (18)0.0056 (15)0.0159 (15)0.0039 (14)
N30.056 (2)0.0458 (18)0.0542 (19)0.0054 (15)0.0008 (15)0.0083 (15)
C10.063 (3)0.053 (2)0.045 (2)0.0000 (19)0.0124 (19)0.0076 (18)
C20.045 (2)0.047 (2)0.040 (2)0.0038 (17)0.0019 (16)0.0018 (16)
C30.040 (2)0.049 (2)0.041 (2)0.0107 (17)0.0005 (16)0.0045 (16)
C40.058 (2)0.054 (2)0.044 (2)0.0104 (19)0.0002 (18)0.0074 (17)
C50.071 (3)0.051 (2)0.048 (2)0.006 (2)0.005 (2)0.0053 (18)
C60.053 (2)0.053 (2)0.059 (2)0.0027 (19)0.0004 (19)0.0033 (19)
C70.047 (2)0.052 (2)0.044 (2)0.0109 (18)0.0027 (17)0.0064 (17)
C80.041 (2)0.044 (2)0.0399 (19)0.0080 (16)0.0003 (16)0.0031 (15)
C90.049 (2)0.049 (2)0.044 (2)0.0047 (18)0.0066 (17)0.0058 (17)
C100.073 (3)0.052 (3)0.073 (3)0.001 (2)0.004 (2)0.007 (2)
C110.047 (2)0.043 (2)0.047 (2)0.0043 (17)0.0055 (17)0.0004 (17)
C120.062 (3)0.050 (2)0.062 (2)0.004 (2)0.023 (2)0.0092 (19)
C130.060 (3)0.044 (2)0.074 (3)0.0064 (19)0.015 (2)0.017 (2)
C140.046 (2)0.041 (2)0.052 (2)0.0048 (17)0.0009 (18)0.0040 (17)
C150.068 (3)0.049 (2)0.051 (2)0.003 (2)0.018 (2)0.0069 (18)
C160.074 (3)0.047 (2)0.053 (2)0.005 (2)0.018 (2)0.0157 (18)
C170.050 (2)0.056 (2)0.040 (2)0.0031 (19)0.0073 (17)0.0060 (18)
C180.104 (4)0.064 (3)0.053 (3)0.011 (3)0.030 (2)0.012 (2)
C190.096 (4)0.073 (3)0.056 (3)0.002 (3)0.028 (2)0.016 (2)
C200.049 (2)0.061 (3)0.053 (2)0.012 (2)0.0074 (19)0.014 (2)
C210.071 (3)0.055 (3)0.059 (3)0.008 (2)0.006 (2)0.002 (2)
C220.074 (3)0.067 (3)0.043 (2)0.002 (2)0.011 (2)0.012 (2)
C230.060 (3)0.066 (3)0.054 (2)0.001 (2)0.015 (2)0.001 (2)
C240.076 (3)0.068 (3)0.072 (3)0.010 (2)0.009 (2)0.018 (2)
Geometric parameters (Å, º) top
S1—C71.721 (3)C10—H10B0.9600
S1—C21.749 (4)C10—H10C0.9600
O1—C91.225 (4)C11—C121.380 (5)
O2—C141.363 (4)C11—C161.392 (5)
O2—C231.427 (4)C12—C131.363 (5)
N1—C11.282 (4)C12—H120.9300
N1—C21.391 (4)C13—C141.391 (5)
N2—C91.354 (4)C13—H130.9300
N2—C111.407 (4)C14—C151.366 (5)
N2—H20.8600C15—C161.381 (5)
N3—C101.452 (4)C15—H150.9300
N3—C61.463 (4)C16—H160.9300
N3—C51.469 (5)C17—C221.367 (5)
C1—C171.450 (5)C17—C181.397 (5)
C1—H10.9300C18—C191.366 (5)
C2—C31.387 (4)C18—H180.9300
C3—C81.440 (5)C19—C201.366 (6)
C3—C91.485 (5)C19—H190.9300
C4—C51.516 (5)C20—C211.387 (5)
C4—C81.506 (4)C20—C241.516 (5)
C4—H4A0.9700C21—C221.371 (5)
C4—H4B0.9700C21—H210.9300
C5—H5A0.9700C22—H220.9300
C5—H5B0.9700C23—H23A0.9600
C6—C71.502 (5)C23—H23B0.9600
C6—H6A0.9700C23—H23C0.9600
C6—H6B0.9700C24—H24A0.9600
C7—C81.360 (5)C24—H24B0.9600
C10—H10A0.9600C24—H24C0.9600
C7—S1—C291.41 (17)H10B—C10—H10C109.5
C14—O2—C23117.7 (3)C12—C11—C16117.2 (3)
C1—N1—C2121.1 (3)C12—C11—N2118.4 (3)
C9—N2—C11128.4 (3)C16—C11—N2124.4 (3)
C9—N2—H2115.8C13—C12—C11121.9 (3)
C11—N2—H2115.8C13—C12—H12119.0
C10—N3—C6110.1 (3)C11—C12—H12119.0
C10—N3—C5110.9 (3)C12—C13—C14120.7 (3)
C6—N3—C5109.3 (3)C12—C13—H13119.6
N1—C1—C17123.4 (3)C14—C13—H13119.6
N1—C1—H1118.3O2—C14—C15126.2 (3)
C17—C1—H1118.3O2—C14—C13115.9 (3)
C3—C2—N1125.1 (3)C15—C14—C13117.9 (3)
C3—C2—S1111.3 (3)C14—C15—C16121.4 (3)
N1—C2—S1123.6 (2)C14—C15—H15119.3
C2—C3—C8111.7 (3)C16—C15—H15119.3
C2—C3—C9126.5 (3)C15—C16—C11120.7 (3)
C8—C3—C9121.8 (3)C15—C16—H16119.6
C5—C4—C8111.0 (3)C11—C16—H16119.6
C5—C4—H4A109.4C22—C17—C18116.7 (3)
C8—C4—H4A109.4C22—C17—C1123.5 (3)
C5—C4—H4B109.4C18—C17—C1119.7 (3)
C8—C4—H4B109.4C19—C18—C17121.0 (4)
H4A—C4—H4B108.0C19—C18—H18119.5
N3—C5—C4112.0 (3)C17—C18—H18119.5
N3—C5—H5A109.2C18—C19—C20121.9 (4)
C4—C5—H5A109.2C18—C19—H19119.0
N3—C5—H5B109.2C20—C19—H19119.0
C4—C5—H5B109.2C19—C20—C21117.4 (4)
H5A—C5—H5B107.9C19—C20—C24121.8 (4)
N3—C6—C7109.9 (3)C21—C20—C24120.8 (4)
N3—C6—H6A109.7C22—C21—C20120.7 (4)
C7—C6—H6A109.7C22—C21—H21119.7
N3—C6—H6B109.7C20—C21—H21119.7
C7—C6—H6B109.7C21—C22—C17122.2 (3)
H6A—C6—H6B108.2C21—C22—H22118.9
C8—C7—C6124.7 (3)C17—C22—H22118.9
C8—C7—S1112.6 (3)O2—C23—H23A109.5
C6—C7—S1122.6 (3)O2—C23—H23B109.5
C7—C8—C3113.0 (3)H23A—C23—H23B109.5
C7—C8—C4119.7 (3)O2—C23—H23C109.5
C3—C8—C4127.4 (3)H23A—C23—H23C109.5
O1—C9—N2123.0 (3)H23B—C23—H23C109.5
O1—C9—C3120.2 (3)C20—C24—H24A109.5
N2—C9—C3116.9 (3)C20—C24—H24B109.5
N3—C10—H10A109.5H24A—C24—H24B109.5
N3—C10—H10B109.5C20—C24—H24C109.5
H10A—C10—H10B109.5H24A—C24—H24C109.5
N3—C10—H10C109.5H24B—C24—H24C109.5
H10A—C10—H10C109.5
C2—N1—C1—C17179.1 (3)C2—C3—C9—O1162.9 (4)
C1—N1—C2—C3168.5 (4)C8—C3—C9—O114.4 (5)
C1—N1—C2—S110.3 (5)C2—C3—C9—N216.0 (5)
C7—S1—C2—C30.7 (3)C8—C3—C9—N2166.7 (3)
C7—S1—C2—N1179.6 (3)C9—N2—C11—C12173.1 (4)
N1—C2—C3—C8179.6 (3)C9—N2—C11—C168.3 (6)
S1—C2—C3—C80.7 (4)C16—C11—C12—C130.4 (6)
N1—C2—C3—C92.1 (6)N2—C11—C12—C13179.1 (4)
S1—C2—C3—C9176.8 (3)C11—C12—C13—C141.0 (7)
C10—N3—C5—C4170.6 (3)C23—O2—C14—C150.0 (5)
C6—N3—C5—C467.8 (4)C23—O2—C14—C13179.4 (3)
C8—C4—C5—N345.9 (4)C12—C13—C14—O2179.4 (4)
C10—N3—C6—C7173.8 (3)C12—C13—C14—C151.1 (6)
C5—N3—C6—C751.6 (4)O2—C14—C15—C16179.8 (4)
N3—C6—C7—C820.0 (5)C13—C14—C15—C160.8 (6)
N3—C6—C7—S1161.5 (3)C14—C15—C16—C110.3 (7)
C2—S1—C7—C80.5 (3)C12—C11—C16—C150.1 (6)
C2—S1—C7—C6178.1 (3)N2—C11—C16—C15178.7 (4)
C6—C7—C8—C3178.4 (3)N1—C1—C17—C221.5 (6)
S1—C7—C8—C30.1 (4)N1—C1—C17—C18179.2 (4)
C6—C7—C8—C40.5 (5)C22—C17—C18—C191.6 (7)
S1—C7—C8—C4179.1 (3)C1—C17—C18—C19179.0 (4)
C2—C3—C8—C70.4 (4)C17—C18—C19—C200.0 (8)
C9—C3—C8—C7177.3 (3)C18—C19—C20—C211.5 (7)
C2—C3—C8—C4178.4 (3)C18—C19—C20—C24179.1 (4)
C9—C3—C8—C43.9 (6)C19—C20—C21—C221.4 (6)
C5—C4—C8—C712.8 (5)C24—C20—C21—C22179.3 (4)
C5—C4—C8—C3165.9 (3)C20—C21—C22—C170.3 (7)
C11—N2—C9—O10.3 (6)C18—C17—C22—C211.8 (6)
C11—N2—C9—C3179.2 (3)C1—C17—C22—C21178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.122.807 (4)137
C1—H1···S10.932.603.051 (4)110
C16—H16···O10.932.272.863 (5)121

Experimental details

Crystal data
Chemical formulaC24H25N3O2S
Mr419.53
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)8.3905 (11), 9.9883 (13), 12.9549 (17)
α, β, γ (°)91.375 (2), 94.789 (3), 96.121 (2)
V3)1075.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
10653, 3967, 2633
Rint0.051
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.184, 1.14
No. of reflections3967
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N10.862.122.807 (4)137
C1—H1···S10.932.603.051 (4)110
C16—H16···O10.932.272.863 (5)121
 

Acknowledgements

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science and Department of Science and Technology, India, for the data collection on the CCD facility and to Bangalore University. GNA thanks MSRIT for encouragement and support.

References

First citationAnilkumar, G. N., Kokila, M. K., Puttaraja, Mohan, S. & Majunath Shetty, K. S. (2005). Acta Cryst. E61, o2841–o2843.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1332–1334.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCsaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121–128.  CAS PubMed Google Scholar
First citationDzhurayev, A. D., Karimkulov, K. M., Makshsumov, A. G. & Amanov, N. (1992). Khim. Farm. Zh. 26, 73–75.  CAS Google Scholar
First citationEl-Maghraby, A. A., Haroun, B. & Mohamed, N. A. (1984). Egypt. J. Pharm. Sci. 23, 327–336.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 94–100.  CrossRef CAS Web of Science Google Scholar
First citationLakshmi, V. V., Sridhar, P. & Polsa, H. (1985). Indian J. Pharm. Sci. 23, 327–336.  Google Scholar
First citationMohan, S. & Saravanan, J. (2003). Asian J. Chem. 15, 67–70.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSebnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). J. Heterocycl. Chem. 36, 333–345.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds