organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dimeth­­oxy-2,2′-[(hexane-1,6-diyldi­­oxy)bis­­(nitrilo­methyl­­idyne)]diphenol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bKey Laboratory of Opto-Electronic Technology and Intelligent Control, Lanzhou Jiaotong University, Ministry of Education, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 2 June 2008; accepted 12 June 2008; online 21 June 2008)

In the title compound, C22H28N2O6, strong intra­molecular O—H⋯N hydrogen bonds and weak inter­molecular C—H⋯O hydrogen bonds stabilize the three-dimensional supra­molecular structure.

Related literature

For related literature, see: Akine et al. (2005[Akine, S., Takanori, T., Dong, W. K. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704-1711.]); Costes et al. (2000[Costes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165-168.]); Dong et al. (2006[Dong, W.-K., Feng, J. H. & Yang, X. Q. (2006). Z. Kristallogr. New Cryst. Struct. 221, 447-448.], 2007[Dong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007). Z. Kristallogr. New Cryst. Struct. 222, 289-290.]); Duan et al. (2007[Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.]); Hoshino (1998[Hoshino, N. (1998). Coord. Chem. Rev. 174, 77-108.]); Jacobsen et al. (1991[Jacobsen, E. N., Zhang, W., Muci, A. R., Ecker, J. R. & Deng, L. (1991). J. Am. Chem. Soc. 113, 7063-7064.]); Katsuki (1995[Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.]); Lacroix (2001[Lacroix, P. G. (2001). Eur. J. Inorg. Chem. 2, 339-348.]); Srinivasan et al. (1986[Srinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309-2320.]); Zhang et al. (1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.]).

[Scheme 1]

Experimental

Crystal data
  • C22H28N2O6

  • Mr = 416.46

  • Monoclinic, P 21 /n

  • a = 6.2913 (9) Å

  • b = 29.063 (3) Å

  • c = 12.0481 (15) Å

  • β = 100.063 (2)°

  • V = 2169.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.43 × 0.23 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.984

  • 10858 measured reflections

  • 3836 independent reflections

  • 2138 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.130

  • S = 1.08

  • 3836 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N2 0.82 1.95 2.662 (3) 145
O3—H3⋯N1 0.82 1.90 2.615 (3) 145

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salen-type compound and its derivatives have attracted much attention to many organic as well as inorganic chemists, because these compounds can easily form complexes with various transition metal ions (Jacobsen et al.;1991, Katsuki et al.,1995). Some of them or their metal complexes are used as a catalyst in various organic reactions (Srinivasan et al., 1986; Zhang et al., 1990), nonlinear optical materials (Lacroix et al., 2001), and metallomesogens (Hoshino et al.,1998) or exhibit interesting magnetic properties (Costes et al., 2000) and so forth. To develop stable analogues of salen-type ligands, we synthesized a new class of salen-type bisoxime compounds on the basis of O-alkyl oxime moiety (–CH=N—O-(CH2)n-O—N=CH–) instead of the imine moiety (Dong et al., 2006; Duan et al., 2007). The larger electronegativity of oxygen atoms is expected to affect strongly the electronic properties of N2O2 coordination sphere, which can lead to different and novel properties and structures of the resulted complexes (Akine et al.,2005). Thus modification of a basic salen skeleton is very interesting and important. In this paper, a novel bisoxime ligand, 6,6'-dimethoxy-2,2'-[(hexane-1,6-diyldioxy)bis(nitrilomethylidyne)]diphenol (I) has been synthesized by 2 equiv. of 3-methoxysalicylidene and 1 equiv. of 1,6-bis(aminooxy)hexane, and shown in Fig. 1.

X-ray crystallographic analysis reveals the crystal structure of the bisoxime ligand (I), Which consists of discrete C22H28N2O6 molecules in which all bond lengths are in normal ranges. The dihedral angle of the two benzene rings is 20.9 (2)°. The oxime groups have anti-conformation, and there are strong O3—H3···N1 and O5—H5···N2 intramolecular hydrogen bonds and weak C7—H7···O3 and C22—H22A···C10 intermolecular hydrogen bonds, stabilize the three-dimensional supramolecuar structure of (I).

Related literature top

For related literature, see: Akine et al. (2005); Costes et al. (2000); Dong et al. (2006, 2007); Duan et al. (2007); Hoshino (1998); Jacobsen et al. (1991); Katsuki (1995); Lacroix (2001); Srinivasan et al. (1986); Zhang et al. (1990).

Experimental top

The title compound (I) was synthesized according to an analogous method reported earlier (Dong et al., 2007). To an ethanol solution (5 ml) of 3-methoxysalicylidene (265.6 mg, 1.75 mmol) was added an ethanol (3 ml) solution of 1,6-bis(aminooxy)hexane (129.4 mg, 0.87 mmol). After the solution had been stirred at 328 K for 4 h, the mixture was filtered. The residue was washed successively with ethanol and ethanol/hexane (1:4), respectively. The product was dried under vacuum to yield 60.62 mg of (I). Yield, 16.7%. mp. 382–384 K. Anal. Calc. for C22H28N2O6: C, 63.45; H, 6.78; N, 6.73. Found: C, 63.47; H, 6.79; N, 6.61%.

Colorless prismatic single crystals suitable for X-ray diffraction studies were obtained after several weeks by slow evaporation from a mixture of ethanol/acetone (1:3) of (I) at room temperture.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), or C—H = 0.97 (CH2), or 0.93 Å (CH), O—H = 0.82 Å, and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of (I) with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
6,6'-Dimethoxy-2,2'-[(hexane-1,6-diyldioxy)bis(nitrilomethylidyne)]diphenol top
Crystal data top
C22H28N2O6F(000) = 888
Mr = 416.46Dx = 1.275 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2277 reflections
a = 6.2913 (9) Åθ = 2.2–22.7°
b = 29.063 (3) ŵ = 0.09 mm1
c = 12.0481 (15) ÅT = 298 K
β = 100.063 (2)°Prismatic, colorless
V = 2169.0 (5) Å30.43 × 0.23 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3836 independent reflections
Radiation source: fine-focus sealed tube2138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.961, Tmax = 0.984k = 3434
10858 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.054P)2]
where P = (Fo2 + 2Fc2)/3
3836 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C22H28N2O6V = 2169.0 (5) Å3
Mr = 416.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2913 (9) ŵ = 0.09 mm1
b = 29.063 (3) ÅT = 298 K
c = 12.0481 (15) Å0.43 × 0.23 × 0.17 mm
β = 100.063 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3836 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2138 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.984Rint = 0.042
10858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.08Δρmax = 0.17 e Å3
3836 reflectionsΔρmin = 0.14 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.1005 (3)0.21438 (7)0.56103 (16)0.0423 (5)
N20.1743 (4)0.00593 (7)0.76432 (19)0.0534 (6)
O10.9073 (3)0.19166 (6)0.52040 (13)0.0500 (5)
O20.0109 (3)0.02112 (6)0.78379 (15)0.0651 (6)
O31.4536 (3)0.23525 (5)0.70115 (13)0.0471 (5)
H31.33770.22220.68100.071*
O41.8128 (3)0.27994 (6)0.74024 (14)0.0536 (5)
O50.5254 (3)0.04977 (6)0.66091 (13)0.0560 (5)
H50.41500.03440.66440.084*
O60.8662 (3)0.09771 (6)0.67802 (14)0.0583 (5)
C10.8437 (4)0.16557 (8)0.6096 (2)0.0460 (7)
H1A0.81460.18610.66860.055*
H1B0.95930.14490.64160.055*
C20.6460 (4)0.13858 (9)0.5642 (2)0.0498 (7)
H2A0.67930.11660.50920.060*
H2B0.53550.15920.52630.060*
C30.5602 (4)0.11318 (9)0.6573 (2)0.0500 (7)
H3A0.67540.09440.69830.060*
H3B0.52030.13560.70960.060*
C40.3675 (4)0.08263 (9)0.6171 (2)0.0563 (7)
H4A0.25650.10040.56980.068*
H4B0.41040.05780.57180.068*
C50.2762 (4)0.06249 (9)0.7145 (2)0.0511 (7)
H5A0.38770.04440.76060.061*
H5B0.23860.08750.76070.061*
C60.0802 (4)0.03258 (9)0.6804 (2)0.0535 (7)
H6A0.03190.04910.63060.064*
H6B0.11680.00510.64230.064*
C71.1556 (4)0.24225 (8)0.4897 (2)0.0425 (6)
H71.06690.24600.41990.051*
C81.3543 (4)0.26824 (7)0.51555 (19)0.0375 (6)
C91.4944 (4)0.26352 (7)0.61737 (19)0.0364 (6)
C101.6878 (4)0.28817 (8)0.6385 (2)0.0399 (6)
C111.7384 (4)0.31800 (8)0.5586 (2)0.0508 (7)
H111.86680.33460.57220.061*
C121.5961 (5)0.32325 (9)0.4574 (2)0.0577 (8)
H121.62970.34370.40360.069*
C131.4083 (5)0.29895 (9)0.4357 (2)0.0520 (7)
H131.31530.30280.36740.062*
C142.0134 (4)0.30314 (9)0.7683 (2)0.0622 (8)
H14A2.09540.29890.70900.093*
H14B2.09230.29080.83740.093*
H14C1.98810.33540.77770.093*
C150.2267 (4)0.01909 (8)0.8565 (2)0.0526 (7)
H150.13920.01030.92350.063*
C160.4139 (4)0.04678 (8)0.8628 (2)0.0457 (7)
C170.5556 (4)0.06051 (8)0.7667 (2)0.0410 (6)
C180.7374 (4)0.08642 (8)0.7769 (2)0.0434 (6)
C190.7739 (4)0.09855 (9)0.8825 (2)0.0518 (7)
H190.89470.11600.88940.062*
C200.6334 (5)0.08513 (9)0.9779 (2)0.0602 (8)
H200.65940.09361.04880.072*
C210.4562 (5)0.05942 (9)0.9683 (2)0.0570 (8)
H210.36250.05021.03290.068*
C221.0452 (4)0.12698 (9)0.6835 (2)0.0630 (8)
H22A0.99470.15550.71850.094*
H22B1.12170.13280.60860.094*
H22C1.14020.11230.72690.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0391 (13)0.0454 (12)0.0418 (12)0.0095 (10)0.0050 (10)0.0060 (10)
N20.0475 (15)0.0481 (13)0.0663 (16)0.0098 (11)0.0147 (12)0.0014 (12)
O10.0465 (12)0.0622 (11)0.0398 (10)0.0191 (9)0.0033 (8)0.0022 (8)
O20.0556 (13)0.0741 (13)0.0667 (13)0.0256 (11)0.0141 (10)0.0043 (10)
O30.0448 (11)0.0539 (10)0.0411 (10)0.0083 (8)0.0035 (8)0.0085 (8)
O40.0394 (11)0.0614 (11)0.0544 (12)0.0089 (9)0.0073 (9)0.0026 (9)
O50.0593 (13)0.0662 (12)0.0453 (11)0.0128 (10)0.0167 (9)0.0018 (9)
O60.0565 (13)0.0676 (12)0.0500 (12)0.0168 (10)0.0070 (10)0.0007 (9)
C10.0467 (17)0.0468 (15)0.0452 (16)0.0046 (13)0.0100 (13)0.0060 (13)
C20.0493 (17)0.0531 (16)0.0477 (16)0.0098 (14)0.0100 (13)0.0033 (13)
C30.0519 (18)0.0507 (16)0.0486 (16)0.0027 (14)0.0124 (14)0.0034 (13)
C40.0592 (19)0.0590 (17)0.0524 (17)0.0115 (15)0.0144 (15)0.0052 (14)
C50.0487 (18)0.0516 (16)0.0542 (17)0.0047 (14)0.0122 (14)0.0043 (13)
C60.0513 (18)0.0515 (16)0.0592 (18)0.0044 (14)0.0136 (14)0.0080 (14)
C70.0453 (17)0.0452 (15)0.0354 (14)0.0035 (13)0.0023 (12)0.0006 (12)
C80.0431 (16)0.0349 (13)0.0346 (14)0.0037 (12)0.0073 (12)0.0024 (11)
C90.0390 (16)0.0345 (13)0.0360 (14)0.0005 (12)0.0074 (12)0.0011 (11)
C100.0390 (16)0.0387 (14)0.0420 (15)0.0009 (12)0.0067 (13)0.0046 (12)
C110.0482 (18)0.0486 (16)0.0565 (18)0.0137 (14)0.0115 (15)0.0038 (14)
C120.071 (2)0.0547 (17)0.0498 (18)0.0166 (16)0.0174 (16)0.0079 (14)
C130.063 (2)0.0549 (16)0.0367 (15)0.0101 (15)0.0058 (14)0.0053 (13)
C140.0425 (18)0.0679 (19)0.072 (2)0.0089 (15)0.0016 (15)0.0131 (15)
C150.0488 (18)0.0548 (17)0.0531 (18)0.0098 (14)0.0054 (14)0.0035 (14)
C160.0481 (18)0.0412 (15)0.0489 (17)0.0027 (13)0.0119 (14)0.0012 (13)
C170.0466 (17)0.0378 (14)0.0417 (16)0.0034 (13)0.0164 (13)0.0030 (12)
C180.0436 (17)0.0427 (15)0.0438 (16)0.0018 (13)0.0073 (13)0.0020 (12)
C190.0516 (18)0.0535 (16)0.0526 (18)0.0097 (14)0.0151 (15)0.0024 (14)
C200.070 (2)0.0666 (19)0.0471 (18)0.0112 (17)0.0197 (16)0.0049 (15)
C210.064 (2)0.0618 (18)0.0434 (17)0.0077 (16)0.0058 (15)0.0012 (14)
C220.0527 (19)0.0665 (18)0.069 (2)0.0166 (16)0.0082 (15)0.0045 (15)
Geometric parameters (Å, º) top
N1—C71.273 (3)C6—H6B0.9700
N1—O11.395 (2)C7—C81.447 (3)
N2—C151.271 (3)C7—H70.9300
N2—O21.391 (3)C8—C91.387 (3)
O1—C11.428 (3)C8—C131.397 (3)
O2—C61.429 (3)C9—C101.397 (3)
O3—C91.360 (3)C10—C111.373 (3)
O3—H30.8200C11—C121.390 (3)
O4—C101.357 (3)C11—H110.9300
O4—C141.418 (3)C12—C131.362 (3)
O5—C171.357 (3)C12—H120.9300
O5—H50.8200C13—H130.9300
O6—C181.359 (3)C14—H14A0.9600
O6—C221.422 (3)C14—H14B0.9600
C1—C21.491 (3)C14—H14C0.9600
C1—H1A0.9700C15—C161.439 (3)
C1—H1B0.9700C15—H150.9300
C2—C31.518 (3)C16—C171.391 (3)
C2—H2A0.9700C16—C211.392 (3)
C2—H2B0.9700C17—C181.393 (3)
C3—C41.512 (3)C18—C191.377 (3)
C3—H3A0.9700C19—C201.379 (4)
C3—H3B0.9700C19—H190.9300
C4—C51.511 (3)C20—C211.364 (3)
C4—H4A0.9700C20—H200.9300
C4—H4B0.9700C21—H210.9300
C5—C61.506 (3)C22—H22A0.9600
C5—H5A0.9700C22—H22B0.9600
C5—H5B0.9700C22—H22C0.9600
C6—H6A0.9700
C7—N1—O1112.83 (19)C13—C8—C7119.3 (2)
C15—N2—O2111.1 (2)O3—C9—C8122.9 (2)
N1—O1—C1109.19 (17)O3—C9—C10116.5 (2)
N2—O2—C6111.04 (19)C8—C9—C10120.6 (2)
C9—O3—H3109.5O4—C10—C11125.1 (2)
C10—O4—C14118.9 (2)O4—C10—C9115.0 (2)
C17—O5—H5109.5C11—C10—C9119.8 (2)
C18—O6—C22117.4 (2)C10—C11—C12119.5 (2)
O1—C1—C2109.2 (2)C10—C11—H11120.3
O1—C1—H1A109.8C12—C11—H11120.3
C2—C1—H1A109.8C13—C12—C11121.0 (2)
O1—C1—H1B109.8C13—C12—H12119.5
C2—C1—H1B109.8C11—C12—H12119.5
H1A—C1—H1B108.3C12—C13—C8120.4 (2)
C1—C2—C3111.5 (2)C12—C13—H13119.8
C1—C2—H2A109.3C8—C13—H13119.8
C3—C2—H2A109.3O4—C14—H14A109.5
C1—C2—H2B109.3O4—C14—H14B109.5
C3—C2—H2B109.3H14A—C14—H14B109.5
H2A—C2—H2B108.0O4—C14—H14C109.5
C4—C3—C2114.7 (2)H14A—C14—H14C109.5
C4—C3—H3A108.6H14B—C14—H14C109.5
C2—C3—H3A108.6N2—C15—C16123.7 (3)
C4—C3—H3B108.6N2—C15—H15118.2
C2—C3—H3B108.6C16—C15—H15118.2
H3A—C3—H3B107.6C17—C16—C21119.2 (2)
C5—C4—C3111.8 (2)C17—C16—C15121.8 (2)
C5—C4—H4A109.3C21—C16—C15119.0 (2)
C3—C4—H4A109.3O5—C17—C16122.8 (2)
C5—C4—H4B109.3O5—C17—C18117.4 (2)
C3—C4—H4B109.3C16—C17—C18119.9 (2)
H4A—C4—H4B107.9O6—C18—C19125.3 (2)
C6—C5—C4114.6 (2)O6—C18—C17115.2 (2)
C6—C5—H5A108.6C19—C18—C17119.5 (2)
C4—C5—H5A108.6C18—C19—C20120.8 (3)
C6—C5—H5B108.6C18—C19—H19119.6
C4—C5—H5B108.6C20—C19—H19119.6
H5A—C5—H5B107.6C21—C20—C19119.9 (3)
O2—C6—C5104.9 (2)C21—C20—H20120.1
O2—C6—H6A110.8C19—C20—H20120.1
C5—C6—H6A110.8C20—C21—C16120.8 (3)
O2—C6—H6B110.8C20—C21—H21119.6
C5—C6—H6B110.8C16—C21—H21119.6
H6A—C6—H6B108.8O6—C22—H22A109.5
N1—C7—C8120.9 (2)O6—C22—H22B109.5
N1—C7—H7119.5H22A—C22—H22B109.5
C8—C7—H7119.5O6—C22—H22C109.5
C9—C8—C13118.6 (2)H22A—C22—H22C109.5
C9—C8—C7122.0 (2)H22B—C22—H22C109.5
C7—N1—O1—C1172.91 (19)C10—C11—C12—C130.6 (4)
C15—N2—O2—C6175.0 (2)C11—C12—C13—C80.3 (4)
N1—O1—C1—C2175.89 (18)C9—C8—C13—C120.8 (4)
O1—C1—C2—C3175.30 (19)C7—C8—C13—C12178.9 (2)
C1—C2—C3—C4176.4 (2)O2—N2—C15—C16178.7 (2)
C2—C3—C4—C5173.9 (2)N2—C15—C16—C171.4 (4)
C3—C4—C5—C6178.6 (2)N2—C15—C16—C21179.8 (3)
N2—O2—C6—C5178.64 (19)C21—C16—C17—O5179.7 (2)
C4—C5—C6—O2174.7 (2)C15—C16—C17—O51.5 (4)
O1—N1—C7—C8178.54 (19)C21—C16—C17—C180.3 (4)
N1—C7—C8—C91.1 (4)C15—C16—C17—C18178.5 (2)
N1—C7—C8—C13179.2 (2)C22—O6—C18—C194.5 (4)
C13—C8—C9—O3178.6 (2)C22—O6—C18—C17175.5 (2)
C7—C8—C9—O31.7 (4)O5—C17—C18—O60.6 (3)
C13—C8—C9—C101.5 (3)C16—C17—C18—O6179.5 (2)
C7—C8—C9—C10178.2 (2)O5—C17—C18—C19179.4 (2)
C14—O4—C10—C110.6 (3)C16—C17—C18—C190.6 (4)
C14—O4—C10—C9179.4 (2)O6—C18—C19—C20179.7 (2)
O3—C9—C10—O41.1 (3)C17—C18—C19—C200.4 (4)
C8—C9—C10—O4178.8 (2)C18—C19—C20—C210.2 (4)
O3—C9—C10—C11178.9 (2)C19—C20—C21—C160.5 (4)
C8—C9—C10—C111.2 (3)C17—C16—C21—C200.3 (4)
O4—C10—C11—C12179.9 (2)C15—C16—C21—C20179.1 (2)
C9—C10—C11—C120.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.821.952.662 (3)145
O3—H3···N10.821.902.615 (3)145

Experimental details

Crystal data
Chemical formulaC22H28N2O6
Mr416.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.2913 (9), 29.063 (3), 12.0481 (15)
β (°) 100.063 (2)
V3)2169.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.23 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.961, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10858, 3836, 2138
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.08
No. of reflections3836
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.821.952.662 (3)145.4
O3—H3···N10.821.902.615 (3)145.0
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A), which are gratefully acknowledged.

References

First citationAkine, S., Takanori, T., Dong, W. K. & Nabeshima, T. (2005). J. Org. Chem. 70, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCostes, J. P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem. 39, 165–168.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W.-K., Feng, J. H. & Yang, X. Q. (2006). Z. Kristallogr. New Cryst. Struct. 221, 447–448.  CAS Google Scholar
First citationDong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007). Z. Kristallogr. New Cryst. Struct. 222, 289–290.  CAS Google Scholar
First citationDuan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoshino, N. (1998). Coord. Chem. Rev. 174, 77–108.  Web of Science CrossRef CAS Google Scholar
First citationJacobsen, E. N., Zhang, W., Muci, A. R., Ecker, J. R. & Deng, L. (1991). J. Am. Chem. Soc. 113, 7063–7064.  CrossRef CAS Web of Science Google Scholar
First citationKatsuki, T. (1995). Coord. Chem. Rev. 140, 189–214.  CrossRef CAS Web of Science Google Scholar
First citationLacroix, P. G. (2001). Eur. J. Inorg. Chem. 2, 339–348.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSrinivasan, K., Michaud, P. & Kochi, J. K. (1986). J. Am. Chem. Soc. 108, 2309–2320.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds