organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-4-pyridylmethane­diol

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 16 June 2008; accepted 19 June 2008; online 28 June 2008)

In the title compound, C11H10N2O2, individual mol­ecules lie across crystallographic twofold rotation axes. Neighboring mol­ecules engage in O—H⋯N hydrogen bonding, forming square-grid layers parallel to the ab plane.

Related literature

For related literature, see: Chen & Mak (2005[Chen, X.-D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1-6.]); Montney et al. (2008[Montney, M. R., Trovitch, R. J. & LaDuca, R. L. (2008). Unpublished results.]); Zaworotko (2007[Zaworotko, M. J. (2007). Cryst. Growth Des. 7, 4-9.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N2O2

  • Mr = 202.21

  • Tetragonal, P 43 21 2

  • a = 7.6130 (2) Å

  • c = 17.5864 (11) Å

  • V = 1019.27 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (2) K

  • 0.30 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.686, Tmax = 0.745 (expected range = 0.907–0.985)

  • 14287 measured reflections

  • 605 independent reflections

  • 549 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.13

  • 605 reflections

  • 72 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.87 (2) 1.87 (2) 2.7376 (19) 173.4 (19)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). COSMO, APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]) and COSMO (Bruker, 2006[Bruker (2006). COSMO, APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2006[Bruker (2006). COSMO, APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Crystal Maker (Palmer, 2007[Palmer, D. (2007). Crystal Maker. PO Box 183, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

While coordination polymers constructed from 4,4'-bipyridine are very common (Zaworotko, 2007), related phases based on its hydrogen-bonding capable analog di-4-pyridylketone (dpk) have not yet been reported (Montney et al., 2008). In an attempt to prepare a zinc nitrate coordination polymer incorporating dpk through an aqueous solution method, an in situ hydration reaction took place, resulting in the crystallization of di(4-pyridyl)methanediol (dpmd).

Crystals of (I) crystallize in an noncentrosymmetric tetragonal space group, with an asymmetric unit consisting of one half of a dpmd molecule. Its central sp3 hybridized C atom rests on a crystallographic 2-fold rotation axis. Operation of this symmetry element generates a complete dpmd molecule (Figure 1).

Each molecule of (I) is conjoined to four others, two via O—H···N hydrogen bonding donation from its alcohol functional groups and two via O—H···N hydrogen bonding acceptance at its pyridyl N atoms. As a result, a grid-like layer motif is formed, which is parallel to the ab crystal plane (Figure 2).

Adjacent layer patterns aggregate through weak C—H···O interactions to construct double layer slab motifs (Figure 3). In turn the double slabs stack along the c crystal direction by packing forces to form the pseudo three-dimensional crystal structure of (I).

Related literature top

For related literature, see: Chen & Mak (2005); Montney et al. (2008); Zaworotko (2007).

Experimental top

Zinc nitrate hexahydrate was obtained commercially. Di-4-pyridylketone (dpk) was prepared via a published procedure (Chen & Mak, 2005). Zinc nitrate hexahydrate (55 mg, 0.19 mmol) was dissolved in 3.0 ml water in a glass test tube. A 2 ml aliquot of a 1:1 water:methanol mixture was then added, followed by 3 ml of a methanolic solution of dpk (70 mg, 0.38 mmol). Colourless blocks of (I) were deposited after standing at 298 K for one week.

Computing details top

Data collection: COSMO (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Crystal Maker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A complete molecule of the title compound. H atom positions are shown as gray sticks. Color code: C black, N blue, O red.
[Figure 2] Fig. 2. A view down c showing the aggregation of molecules of the title compound into a (4,4) square grid. Hydrogen bonding is indicated as dashed lines.
[Figure 3] Fig. 3. A view down c of the offset double layer motif in the title compound.
Di-4-pyridylmethanediol top
Crystal data top
C11H10N2O2Dx = 1.318 Mg m3
Mr = 202.21Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 14287 reflections
Hall symbol: P 4nw 2abwθ = 2.9–25.3°
a = 7.6130 (2) ŵ = 0.09 mm1
c = 17.5864 (11) ÅT = 173 K
V = 1019.27 (7) Å3Block, colourless
Z = 40.30 × 0.22 × 0.16 mm
F(000) = 424
Data collection top
Bruker APEXII
diffractometer
605 independent reflections
Radiation source: fine-focus sealed tube549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ψ scansθmax = 25.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.686, Tmax = 0.745k = 99
14287 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.1593P]
where P = (Fo2 + 2Fc2)/3
605 reflections(Δ/σ)max < 0.001
72 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C11H10N2O2Z = 4
Mr = 202.21Mo Kα radiation
Tetragonal, P43212µ = 0.09 mm1
a = 7.6130 (2) ÅT = 173 K
c = 17.5864 (11) Å0.30 × 0.22 × 0.16 mm
V = 1019.27 (7) Å3
Data collection top
Bruker APEXII
diffractometer
605 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
549 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.745Rint = 0.040
14287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.13 e Å3
605 reflectionsΔρmin = 0.13 e Å3
72 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62268 (16)0.65611 (15)0.06536 (7)0.0256 (3)
H1A0.616 (3)0.768 (3)0.0580 (11)0.031*
N10.6238 (2)0.01378 (19)0.04930 (8)0.0317 (4)
C10.5269 (3)0.1201 (3)0.09305 (11)0.0377 (5)
H10.46810.07170.13440.045*
C20.5099 (3)0.2974 (2)0.07980 (10)0.0322 (5)
H20.44220.36650.11210.039*
C30.5945 (2)0.3724 (2)0.01785 (9)0.0216 (4)
C40.6967 (2)0.2639 (2)0.02701 (10)0.0263 (4)
H40.75730.30890.06860.032*
C50.7075 (2)0.0872 (2)0.00905 (11)0.0307 (5)
H50.77720.01570.03950.037*
C60.5671 (2)0.5671 (2)0.00000.0207 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0303 (7)0.0177 (6)0.0287 (7)0.0006 (5)0.0056 (6)0.0012 (5)
N10.0390 (10)0.0217 (8)0.0343 (8)0.0022 (7)0.0040 (8)0.0004 (7)
C10.0455 (13)0.0300 (11)0.0377 (10)0.0023 (10)0.0098 (9)0.0074 (9)
C20.0352 (11)0.0266 (10)0.0349 (10)0.0056 (8)0.0095 (9)0.0023 (8)
C30.0196 (9)0.0221 (9)0.0232 (8)0.0007 (7)0.0047 (7)0.0016 (7)
C40.0267 (10)0.0256 (10)0.0264 (9)0.0007 (8)0.0018 (8)0.0017 (8)
C50.0342 (10)0.0254 (10)0.0325 (10)0.0059 (8)0.0021 (9)0.0057 (9)
C60.0208 (8)0.0208 (8)0.0205 (11)0.0008 (10)0.0002 (7)0.0002 (7)
Geometric parameters (Å, º) top
O1—C61.3998 (17)C3—C41.382 (2)
O1—H1A0.87 (2)C3—C61.529 (2)
N1—C51.331 (2)C4—C51.384 (2)
N1—C11.338 (2)C4—H40.9300
C1—C21.376 (3)C5—H50.9300
C1—H10.9300C6—O1i1.3998 (17)
C2—C31.389 (2)C6—C3i1.529 (2)
C2—H20.9300
C6—O1—H1A109.7 (13)C3—C4—H4120.5
C5—N1—C1116.94 (15)C5—C4—H4120.5
N1—C1—C2123.20 (17)N1—C5—C4123.77 (17)
N1—C1—H1118.4N1—C5—H5118.1
C2—C1—H1118.4C4—C5—H5118.1
C1—C2—C3119.53 (17)O1—C6—O1i112.43 (19)
C1—C2—H2120.2O1—C6—C3105.03 (8)
C3—C2—H2120.2O1i—C6—C3113.29 (8)
C4—C3—C2117.59 (16)O1—C6—C3i113.30 (8)
C4—C3—C6122.61 (14)O1i—C6—C3i105.03 (8)
C2—C3—C6119.76 (14)C3—C6—C3i107.87 (19)
C3—C4—C5118.94 (17)
C5—N1—C1—C20.6 (3)C3—C4—C5—N10.3 (3)
N1—C1—C2—C30.8 (3)C4—C3—C6—O1123.43 (16)
C1—C2—C3—C41.6 (3)C2—C3—C6—O158.9 (2)
C1—C2—C3—C6176.25 (17)C4—C3—C6—O1i0.4 (2)
C2—C3—C4—C51.0 (3)C2—C3—C6—O1i178.06 (15)
C6—C3—C4—C5176.72 (15)C4—C3—C6—C3i115.45 (17)
C1—N1—C5—C41.1 (3)C2—C3—C6—C3i62.25 (14)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1ii0.87 (2)1.87 (2)2.7376 (19)173.4 (19)
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H10N2O2
Mr202.21
Crystal system, space groupTetragonal, P43212
Temperature (K)173
a, c (Å)7.6130 (2), 17.5864 (11)
V3)1019.27 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.686, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
14287, 605, 549
Rint0.040
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.13
No. of reflections605
No. of parameters72
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: COSMO (Bruker, 2006), APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Crystal Maker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.87 (2)1.87 (2)2.7376 (19)173.4 (19)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge Michigan State University for funding this work.

References

First citationBruker (2006). COSMO, APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-D. & Mak, T. C. W. (2005). J. Mol. Struct. 743, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationMontney, M. R., Trovitch, R. J. & LaDuca, R. L. (2008). Unpublished results.  Google Scholar
First citationPalmer, D. (2007). Crystal Maker. PO Box 183, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaworotko, M. J. (2007). Cryst. Growth Des. 7, 4–9.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds