metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(5-methyl­pyrazine-2-carboxyl­ato)­di­phenyl­tin(IV)

aDepartment of Chemistry, Jining University, Shandong 273155, People's Republic of China
*Correspondence e-mail: zhongjungao@yahoo.cn

(Received 23 April 2008; accepted 28 May 2008; online 7 June 2008)

In the mol­ecule of the title compound, [Sn(C6H5)2(C6H5N2O2)2], two O and one N atoms from the two 5-methyl­pyrazine-2-carboxyl­ate ligands and one C atom of a phenyl group form a distorted square-planar arrangement in the equatorial plane around the Sn atom, while the distorted octa­hedral coordination is completed by an N atom of one of the 5-methyl­pyrazine-2-carboxyl­ate ligands and a C atom of the other phenyl group in the axial positions. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Gielen et al. (1988[Gielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg. 97, 873-876.]). For related literature, see: Vollano et al. (1984[Vollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745-750.]); Ma et al. (2004[Ma, C. L., Han, Y. F., Zhang, R. F. & Wang, D. Q. (2004). Dalton Trans. pp. 1832-1840.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C6H5N2O2)2]

  • Mr = 547.13

  • Monoclinic, P 21 /n

  • a = 12.030 (4) Å

  • b = 14.658 (5) Å

  • c = 13.409 (5) Å

  • β = 91.872 (4)°

  • V = 2363.2 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 298 (2) K

  • 0.45 × 0.43 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.824

  • 12010 measured reflections

  • 4166 independent reflections

  • 2732 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.132

  • S = 1.05

  • 4166 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.086 (4)
Sn1—O3 2.091 (4)
Sn1—C13 2.117 (5)
Sn1—C19 2.130 (6)
Sn1—N1 2.357 (4)
Sn1—N3 2.363 (5)
O1—Sn1—O3 149.56 (15)
O1—Sn1—C13 97.14 (18)
O3—Sn1—C13 101.11 (18)
O1—Sn1—C19 101.5 (2)
O3—Sn1—C19 96.7 (2)
C13—Sn1—C19 105.6 (2)
O1—Sn1—N1 73.49 (15)
O3—Sn1—N1 82.40 (15)
C13—Sn1—N1 163.15 (18)
C19—Sn1—N1 90.17 (18)
O1—Sn1—N3 83.74 (16)
O3—Sn1—N3 73.16 (16)
C13—Sn1—N3 87.08 (18)
C19—Sn1—N3 165.3 (2)
N1—Sn1—N3 78.12 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯O2i 0.96 2.51 3.315 (3) 142
C14—H14⋯O2i 0.93 2.57 3.298 (3) 135
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Self-assembled organotin derivatives of carboxylic acid ligands have been extensively studied due to their biological activities (Gielen et al., 1988). 5-methylpyrazine-2-carboxylic acid is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers, and small changes in experimental conditions can lead to very different architectures (Ma et al., 2004).

The molecule of the title compound, (I), (Fig. 1) consists of two phenyl and two (5-methylpyrazine-2-carboxylate) groups bonded to the Sn atom and has a monomeric structure. The two O and the one N atoms of the two 2-methylpyrazine -5-carboxylate ligands and the one C atom of the one phenyl group in the equatorial plane around the Sn atom form a distorted square-planar arrangement, while the distorted octahedral coordination is completed by the one N atom of the one 5-methylpyrazine-2-carboxylate ligand and the one C atom of the other phenyl group in the axial positions (Table 1 and Fig. 1). The Sn1-O1 [2.086 (4) Å] and Sn1-O3 [2.091 (4) Å] bonds are much shorter than the van der Waal's sum of 4.0 Å (Vollano et al., 1984).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general backgroud, see: Gielen et al. (1988). For related literature, see: Vollano et al. (1984); Ma et al. (2004).

Experimental top

For the preparation of the title compound, a mixture of diphenyltin dichloride (344 mg, 1.0 mmol), 5-methylpyrazine-2-carboxylic acid (276 mg, 2.0 mmol) and sodium ethoxide (136 mg, 2.0 mmol) in ethanol (80 ml) was heated under reflux for 12 h at 303 K. The resulting clear solution was evaporated under vacuum and the product recrystallized from a mixture of methanol to yield colorless, block-like crystals of (I) (yield; 377 mg, 69%, m.p. 459 K). Analysis, calculated for (I): C 52.68, H, 3.68; N 10.24%; found: C 52.96, H 3.87, N, 10.11%.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Bis(5-methylpyrazine-2-carboxylato)diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C6H5N2O2)2]F(000) = 1096
Mr = 547.13Dx = 1.538 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3659 reflections
a = 12.030 (4) Åθ = 2.2–24.0°
b = 14.658 (5) ŵ = 1.12 mm1
c = 13.409 (5) ÅT = 298 K
β = 91.872 (4)°Block, colorless
V = 2363.2 (14) Å30.45 × 0.43 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4166 independent reflections
Radiation source: fine-focus sealed tube2732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.633, Tmax = 0.824k = 1714
12010 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.066P)2 + 2.0808P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4166 reflectionsΔρmax = 0.56 e Å3
298 parametersΔρmin = 0.46 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Sn(C6H5)2(C6H5N2O2)2]V = 2363.2 (14) Å3
Mr = 547.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.030 (4) ŵ = 1.12 mm1
b = 14.658 (5) ÅT = 298 K
c = 13.409 (5) Å0.45 × 0.43 × 0.18 mm
β = 91.872 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4166 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2732 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.824Rint = 0.039
12010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035298 parameters
wR(F2) = 0.132H-atom parameters constrained
S = 1.05Δρmax = 0.56 e Å3
4166 reflectionsΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.03995 (3)0.25533 (2)0.90574 (3)0.04317 (17)
N10.0859 (4)0.2891 (3)1.0739 (3)0.0440 (11)
N20.1584 (4)0.3005 (4)1.2707 (4)0.0611 (13)
N30.1259 (4)0.2163 (3)0.9852 (3)0.0473 (11)
N40.3408 (5)0.1915 (4)1.0421 (5)0.0788 (17)
O10.0994 (3)0.1346 (2)0.9701 (3)0.0517 (10)
O20.1706 (4)0.0621 (3)1.1024 (4)0.0853 (15)
O30.0532 (3)0.3752 (2)0.9163 (3)0.0545 (10)
O40.2151 (4)0.4402 (3)0.9433 (4)0.0946 (16)
C10.1354 (5)0.1303 (4)1.0620 (5)0.0557 (15)
C20.1298 (5)0.2175 (4)1.1213 (4)0.0450 (13)
C30.1662 (5)0.2249 (4)1.2196 (5)0.0556 (15)
H30.19760.17401.25090.067*
C40.1149 (5)0.3732 (4)1.2234 (4)0.0541 (15)
C50.0804 (5)0.3667 (4)1.1242 (4)0.0488 (14)
H50.05250.41841.09180.059*
C60.1053 (6)0.4589 (4)1.2806 (5)0.082 (2)
H6A0.13370.44961.34760.122*
H6B0.02860.47671.28200.122*
H6C0.14740.50601.24940.122*
C70.1548 (5)0.3744 (4)0.9450 (5)0.0570 (16)
C80.1966 (5)0.2842 (4)0.9824 (4)0.0513 (14)
C90.3049 (6)0.2725 (5)1.0106 (6)0.075 (2)
H90.35370.32171.00780.090*
C100.2715 (6)0.1230 (5)1.0447 (5)0.0649 (18)
C110.1606 (5)0.1348 (4)1.0159 (4)0.0536 (15)
H110.11170.08571.01830.064*
C120.3116 (6)0.0326 (5)1.0790 (6)0.091 (2)
H12A0.38850.03711.09530.136*
H12B0.26850.01381.13690.136*
H12C0.30370.01151.02670.136*
C130.0319 (4)0.1966 (4)0.7745 (4)0.0469 (13)
C140.0653 (5)0.1070 (4)0.7688 (5)0.0665 (17)
H140.05840.07040.82530.080*
C150.1086 (6)0.0704 (5)0.6821 (6)0.080 (2)
H150.12980.00940.68010.096*
C160.1207 (6)0.1231 (7)0.5990 (6)0.088 (2)
H160.15140.09830.54050.105*
C170.0877 (6)0.2125 (7)0.6012 (5)0.083 (2)
H170.09530.24870.54440.100*
C180.0427 (5)0.2482 (4)0.6896 (5)0.0645 (18)
H180.01940.30870.69110.077*
C190.1901 (5)0.3181 (4)0.8612 (4)0.0556 (15)
C200.2684 (7)0.2621 (5)0.8185 (7)0.084 (2)
H200.25410.19980.81420.101*
C210.3653 (7)0.2945 (8)0.7828 (7)0.111 (3)
H210.41560.25570.75290.134*
C220.3867 (8)0.3866 (7)0.7921 (6)0.104 (2)
H220.45370.40960.77010.124*
C230.3137 (7)0.4438 (6)0.8320 (6)0.090 (2)
H230.32860.50600.83650.108*
C240.2133 (6)0.4077 (5)0.8671 (5)0.0750 (19)
H240.16200.44690.89500.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0388 (2)0.0483 (3)0.0423 (2)0.00011 (17)0.00113 (16)0.00171 (17)
N10.040 (3)0.046 (2)0.046 (3)0.006 (2)0.001 (2)0.003 (2)
N20.058 (3)0.075 (4)0.050 (3)0.005 (3)0.006 (2)0.004 (3)
N30.045 (3)0.049 (3)0.048 (3)0.000 (2)0.001 (2)0.003 (2)
N40.068 (4)0.081 (4)0.090 (4)0.002 (3)0.025 (3)0.005 (3)
O10.054 (2)0.047 (2)0.055 (2)0.0109 (17)0.0018 (19)0.0026 (17)
O20.121 (4)0.052 (3)0.081 (3)0.018 (3)0.015 (3)0.012 (2)
O30.058 (3)0.046 (2)0.059 (2)0.0037 (18)0.009 (2)0.0066 (17)
O40.080 (4)0.067 (3)0.136 (5)0.030 (3)0.001 (3)0.006 (3)
C10.051 (4)0.053 (4)0.063 (4)0.004 (3)0.005 (3)0.011 (3)
C20.044 (3)0.049 (3)0.042 (3)0.003 (3)0.002 (3)0.006 (3)
C30.051 (4)0.063 (4)0.052 (4)0.000 (3)0.006 (3)0.011 (3)
C40.053 (4)0.063 (4)0.046 (3)0.008 (3)0.003 (3)0.006 (3)
C50.044 (3)0.048 (3)0.053 (3)0.004 (2)0.001 (3)0.000 (3)
C60.096 (6)0.081 (5)0.068 (5)0.004 (4)0.004 (4)0.023 (4)
C70.053 (4)0.057 (4)0.061 (4)0.015 (3)0.005 (3)0.003 (3)
C80.044 (4)0.059 (3)0.051 (3)0.007 (3)0.004 (3)0.015 (3)
C90.060 (5)0.080 (5)0.085 (5)0.023 (4)0.008 (4)0.003 (4)
C100.064 (5)0.075 (5)0.057 (4)0.014 (4)0.018 (3)0.013 (3)
C110.054 (4)0.053 (4)0.055 (4)0.003 (3)0.009 (3)0.005 (3)
C120.087 (6)0.098 (6)0.090 (6)0.033 (4)0.032 (4)0.002 (4)
C130.039 (3)0.057 (4)0.045 (3)0.005 (3)0.001 (3)0.003 (3)
C140.065 (4)0.065 (4)0.069 (4)0.005 (3)0.015 (3)0.007 (3)
C150.074 (5)0.071 (5)0.095 (6)0.006 (4)0.017 (4)0.027 (4)
C160.059 (5)0.132 (8)0.072 (5)0.004 (5)0.004 (4)0.036 (5)
C170.062 (5)0.143 (7)0.044 (4)0.010 (5)0.001 (3)0.004 (4)
C180.051 (4)0.095 (5)0.047 (4)0.015 (3)0.002 (3)0.006 (3)
C190.051 (3)0.066 (4)0.050 (3)0.007 (3)0.001 (3)0.001 (3)
C200.069 (5)0.089 (5)0.095 (5)0.006 (4)0.026 (4)0.003 (4)
C210.077 (5)0.147 (6)0.112 (6)0.008 (5)0.042 (4)0.001 (5)
C220.082 (5)0.130 (6)0.099 (5)0.030 (5)0.015 (4)0.003 (5)
C230.097 (5)0.096 (5)0.077 (5)0.038 (4)0.006 (4)0.002 (4)
C240.073 (4)0.089 (5)0.063 (4)0.023 (4)0.003 (3)0.007 (3)
Geometric parameters (Å, º) top
Sn1—O12.086 (4)C9—H90.9300
Sn1—O32.091 (4)C10—C111.411 (8)
Sn1—C132.117 (5)C10—C121.488 (9)
Sn1—C192.130 (6)C11—H110.9300
Sn1—N12.357 (4)C12—H12A0.9600
Sn1—N32.363 (5)C12—H12B0.9600
N1—C51.324 (7)C12—H12C0.9600
N1—C21.328 (7)C13—C181.370 (8)
N2—C31.308 (8)C13—C141.375 (8)
N2—C41.338 (7)C14—C151.368 (9)
N3—C81.309 (7)C14—H140.9300
N3—C111.335 (7)C15—C161.360 (10)
N4—C101.305 (8)C15—H150.9300
N4—C91.336 (9)C16—C171.370 (10)
O1—C11.294 (7)C16—H160.9300
O2—C11.207 (6)C17—C181.389 (10)
O3—C71.292 (7)C17—H170.9300
O4—C71.207 (7)C18—H180.9300
C1—C21.508 (8)C19—C241.344 (9)
C2—C31.379 (8)C19—C201.387 (9)
C3—H30.9300C20—C211.361 (11)
C4—C51.384 (7)C20—H200.9300
C4—C61.477 (8)C21—C221.380 (12)
C5—H50.9300C21—H210.9300
C6—H6A0.9600C22—C231.339 (11)
C6—H6B0.9600C22—H220.9300
C6—H6C0.9600C23—C241.413 (9)
C7—C81.506 (9)C23—H230.9300
C8—C91.379 (9)C24—H240.9300
O1—Sn1—O3149.56 (15)N4—C9—C8121.0 (6)
O1—Sn1—C1397.14 (18)N4—C9—H9119.5
O3—Sn1—C13101.11 (18)C8—C9—H9119.5
O1—Sn1—C19101.5 (2)N4—C10—C11120.5 (6)
O3—Sn1—C1996.7 (2)N4—C10—C12118.7 (6)
C13—Sn1—C19105.6 (2)C11—C10—C12120.8 (6)
O1—Sn1—N173.49 (15)N3—C11—C10120.2 (6)
O3—Sn1—N182.40 (15)N3—C11—H11119.9
C13—Sn1—N1163.15 (18)C10—C11—H11119.9
C19—Sn1—N190.17 (18)C10—C12—H12A109.5
O1—Sn1—N383.74 (16)C10—C12—H12B109.5
O3—Sn1—N373.16 (16)H12A—C12—H12B109.5
C13—Sn1—N387.08 (18)C10—C12—H12C109.5
C19—Sn1—N3165.3 (2)H12A—C12—H12C109.5
N1—Sn1—N378.12 (15)H12B—C12—H12C109.5
C5—N1—C2117.4 (5)C18—C13—C14117.5 (6)
C5—N1—Sn1130.8 (4)C18—C13—Sn1119.5 (4)
C2—N1—Sn1111.6 (4)C14—C13—Sn1123.0 (4)
C3—N2—C4117.5 (5)C15—C14—C13121.7 (7)
C8—N3—C11118.7 (5)C15—C14—H14119.2
C8—N3—Sn1111.1 (4)C13—C14—H14119.2
C11—N3—Sn1129.3 (4)C16—C15—C14120.1 (7)
C10—N4—C9118.7 (6)C16—C15—H15119.9
C1—O1—Sn1122.3 (3)C14—C15—H15119.9
C7—O3—Sn1121.8 (3)C15—C16—C17120.2 (7)
O2—C1—O1124.7 (6)C15—C16—H16119.9
O2—C1—C2119.0 (6)C17—C16—H16119.9
O1—C1—C2116.2 (5)C16—C17—C18118.9 (7)
N1—C2—C3120.2 (5)C16—C17—H17120.5
N1—C2—C1116.2 (5)C18—C17—H17120.5
C3—C2—C1123.5 (5)C13—C18—C17121.7 (7)
N2—C3—C2122.7 (6)C13—C18—H18119.2
N2—C3—H3118.6C17—C18—H18119.2
C2—C3—H3118.6C24—C19—C20117.4 (6)
N2—C4—C5120.0 (5)C24—C19—Sn1125.6 (5)
N2—C4—C6117.9 (5)C20—C19—Sn1116.9 (5)
C5—C4—C6122.1 (6)C21—C20—C19122.6 (8)
N1—C5—C4122.0 (5)C21—C20—H20118.7
N1—C5—H5119.0C19—C20—H20118.7
C4—C5—H5119.0C20—C21—C22118.0 (9)
C4—C6—H6A109.5C20—C21—H21121.0
C4—C6—H6B109.5C22—C21—H21121.0
H6A—C6—H6B109.5C23—C22—C21121.8 (9)
C4—C6—H6C109.5C23—C22—H22119.1
H6A—C6—H6C109.5C21—C22—H22119.1
H6B—C6—H6C109.5C22—C23—C24118.5 (8)
O4—C7—O3124.2 (6)C22—C23—H23120.7
O4—C7—C8120.0 (6)C24—C23—H23120.7
O3—C7—C8115.9 (5)C19—C24—C23121.6 (7)
N3—C8—C9121.1 (6)C19—C24—H24119.2
N3—C8—C7116.9 (5)C23—C24—H24119.2
C9—C8—C7122.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O2i0.962.513.315 (3)142
C14—H14···O2i0.932.573.298 (3)135
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C6H5N2O2)2]
Mr547.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.030 (4), 14.658 (5), 13.409 (5)
β (°) 91.872 (4)
V3)2363.2 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.45 × 0.43 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.633, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
12010, 4166, 2732
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.132, 1.05
No. of reflections4166
No. of parameters298
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.46

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Sn1—O12.086 (4)Sn1—C192.130 (6)
Sn1—O32.091 (4)Sn1—N12.357 (4)
Sn1—C132.117 (5)Sn1—N32.363 (5)
O1—Sn1—O3149.56 (15)C13—Sn1—N1163.15 (18)
O1—Sn1—C1397.14 (18)C19—Sn1—N190.17 (18)
O3—Sn1—C13101.11 (18)O1—Sn1—N383.74 (16)
O1—Sn1—C19101.5 (2)O3—Sn1—N373.16 (16)
O3—Sn1—C1996.7 (2)C13—Sn1—N387.08 (18)
C13—Sn1—C19105.6 (2)C19—Sn1—N3165.3 (2)
O1—Sn1—N173.49 (15)N1—Sn1—N378.12 (15)
O3—Sn1—N182.40 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···O2i0.962.513.315 (3)142.00
C14—H14···O2i0.932.573.298 (3)135.00
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

We acknowledge the financial support of the Science Foundation of Shandong.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg. 97, 873–876.  CAS Google Scholar
First citationMa, C. L., Han, Y. F., Zhang, R. F. & Wang, D. Q. (2004). Dalton Trans. pp. 1832–1840.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVollano, J. F., Day, R. O. & Holmes, R. R. (1984). Organometallics, 3, 745–750.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds