organic compounds
N-(4,5-Diazafluoren-9-ylidene)aniline
aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn
In the molecule of the title compound, C17H11N3, the 4,5-diazafluorenylidene unit is nearly planar and is oriented with respect to the phenyl ring at a dihedral angle of 75.75 (3)°. In the the molecules are aligned in the [100] direction in such a way that neighbouring 4,5-diazafluorenylidene planes face each other in an antiparallel fashion.
Related literature
For related literature, see: Wang & Rillema (1997); Wang et al. (2006); Peters et al. (1998); Glagovich et al. (2004a,b). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808016668/hk2468sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808016668/hk2468Isup2.hkl
The title compound, (I), was prepared according to the literature method (Wang & Rillema, 1997). Crystals suitable for X-ray analysis were obtained by dissolving (I) (2.0 g, 6.3 mmol) in acetate ester solution (50 ml, 1.0 mol/L) and evaporating the solvent slowly at room temperature for about 5 d.
H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A packing diagram of (I). |
C17H11N3 | Z = 2 |
Mr = 257.29 | F(000) = 268 |
Triclinic, P1 | Dx = 1.319 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.1950 (14) Å | Cell parameters from 25 reflections |
b = 8.5860 (17) Å | θ = 9–13° |
c = 11.876 (2) Å | µ = 0.08 mm−1 |
α = 80.63 (3)° | T = 298 K |
β = 74.78 (3)° | Needle, colourless |
γ = 66.46 (3)° | 0.20 × 0.10 × 0.05 mm |
V = 647.6 (2) Å3 |
Enraf–Nonius CAD-4 diffractometer | 1642 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.057 |
Graphite monochromator | θmax = 25.2°, θmin = 1.8° |
ω/2θ scans | h = −8→8 |
Absorption correction: ψ scan (North et al., 1968) | k = −9→10 |
Tmin = 0.984, Tmax = 0.996 | l = 0→14 |
2529 measured reflections | 3 standard reflections every 120 min |
2326 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.08P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3 |
2326 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C17H11N3 | γ = 66.46 (3)° |
Mr = 257.29 | V = 647.6 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.1950 (14) Å | Mo Kα radiation |
b = 8.5860 (17) Å | µ = 0.08 mm−1 |
c = 11.876 (2) Å | T = 298 K |
α = 80.63 (3)° | 0.20 × 0.10 × 0.05 mm |
β = 74.78 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1642 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.057 |
Tmin = 0.984, Tmax = 0.996 | 3 standard reflections every 120 min |
2529 measured reflections | intensity decay: none |
2326 independent reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.178 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.19 e Å−3 |
2326 reflections | Δρmin = −0.25 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.1000 (4) | 1.2848 (3) | 0.6315 (2) | 0.0491 (6) | |
N2 | 0.3187 (4) | 0.7234 (3) | 0.4917 (2) | 0.0492 (6) | |
N3 | 0.3994 (4) | 0.9717 (3) | 0.2888 (2) | 0.0503 (6) | |
C1 | 0.0047 (6) | 1.2899 (6) | 0.9516 (3) | 0.0808 (12) | |
H1B | 0.0717 | 1.2935 | 1.0078 | 0.097* | |
C2 | −0.1937 (6) | 1.2891 (5) | 0.9852 (3) | 0.0778 (11) | |
H2B | −0.2605 | 1.2921 | 1.0638 | 0.093* | |
C3 | −0.2916 (6) | 1.2841 (5) | 0.9021 (3) | 0.0675 (9) | |
H3B | −0.4257 | 1.2845 | 0.9249 | 0.081* | |
C4 | −0.1951 (5) | 1.2783 (4) | 0.7855 (3) | 0.0561 (8) | |
H4A | −0.2637 | 1.2753 | 0.7301 | 0.067* | |
C5 | 0.0048 (5) | 1.2772 (3) | 0.7513 (2) | 0.0470 (7) | |
C6 | 0.1040 (5) | 1.2853 (4) | 0.8350 (3) | 0.0616 (9) | |
H6A | 0.2369 | 1.2877 | 0.8124 | 0.074* | |
C7 | 0.1686 (4) | 1.1567 (3) | 0.5708 (2) | 0.0401 (6) | |
C8 | 0.1856 (4) | 0.9756 (3) | 0.6012 (2) | 0.0385 (6) | |
C9 | 0.1347 (4) | 0.8860 (4) | 0.7046 (2) | 0.0454 (7) | |
H9A | 0.0739 | 0.9384 | 0.7750 | 0.055* | |
C10 | 0.1782 (5) | 0.7148 (4) | 0.6987 (3) | 0.0501 (7) | |
H10A | 0.1470 | 0.6498 | 0.7662 | 0.060* | |
C11 | 0.2673 (5) | 0.6404 (4) | 0.5935 (3) | 0.0530 (8) | |
H11A | 0.2936 | 0.5253 | 0.5929 | 0.064* | |
C12 | 0.2774 (4) | 0.8874 (3) | 0.4993 (2) | 0.0409 (6) | |
C13 | 0.3186 (4) | 1.0075 (3) | 0.4004 (2) | 0.0405 (6) | |
C14 | 0.4125 (5) | 1.1058 (4) | 0.2161 (3) | 0.0574 (8) | |
H14A | 0.4674 | 1.0878 | 0.1371 | 0.069* | |
C15 | 0.3502 (5) | 1.2689 (4) | 0.2504 (3) | 0.0538 (8) | |
H15A | 0.3631 | 1.3562 | 0.1951 | 0.065* | |
C16 | 0.2688 (4) | 1.3018 (4) | 0.3668 (3) | 0.0502 (7) | |
H16A | 0.2265 | 1.4099 | 0.3924 | 0.060* | |
C17 | 0.2534 (4) | 1.1661 (3) | 0.4432 (2) | 0.0398 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0548 (14) | 0.0417 (13) | 0.0454 (14) | −0.0158 (11) | −0.0029 (11) | −0.0071 (11) |
N2 | 0.0500 (14) | 0.0445 (14) | 0.0527 (15) | −0.0180 (11) | −0.0079 (11) | −0.0066 (11) |
N3 | 0.0466 (14) | 0.0543 (15) | 0.0451 (14) | −0.0190 (11) | 0.0006 (11) | −0.0072 (11) |
C1 | 0.079 (3) | 0.109 (3) | 0.048 (2) | −0.027 (2) | −0.0153 (19) | −0.010 (2) |
C2 | 0.080 (3) | 0.102 (3) | 0.046 (2) | −0.032 (2) | −0.0057 (18) | −0.0088 (19) |
C3 | 0.065 (2) | 0.072 (2) | 0.059 (2) | −0.0299 (18) | 0.0026 (17) | −0.0032 (17) |
C4 | 0.064 (2) | 0.0534 (18) | 0.0501 (18) | −0.0241 (15) | −0.0077 (15) | −0.0049 (14) |
C5 | 0.0553 (17) | 0.0351 (15) | 0.0422 (16) | −0.0116 (12) | −0.0043 (13) | −0.0044 (12) |
C6 | 0.0573 (19) | 0.065 (2) | 0.0533 (19) | −0.0150 (16) | −0.0067 (15) | −0.0076 (15) |
C7 | 0.0352 (13) | 0.0419 (15) | 0.0407 (15) | −0.0114 (11) | −0.0091 (11) | −0.0023 (12) |
C8 | 0.0351 (13) | 0.0410 (14) | 0.0432 (15) | −0.0152 (11) | −0.0133 (11) | −0.0029 (11) |
C9 | 0.0472 (16) | 0.0462 (16) | 0.0405 (15) | −0.0140 (13) | −0.0111 (12) | −0.0034 (12) |
C10 | 0.0534 (17) | 0.0437 (16) | 0.0510 (18) | −0.0192 (13) | −0.0116 (14) | 0.0056 (13) |
C11 | 0.0542 (18) | 0.0402 (16) | 0.061 (2) | −0.0160 (13) | −0.0102 (15) | −0.0026 (14) |
C12 | 0.0334 (13) | 0.0409 (15) | 0.0465 (16) | −0.0125 (11) | −0.0073 (12) | −0.0038 (12) |
C13 | 0.0311 (13) | 0.0457 (16) | 0.0429 (16) | −0.0142 (11) | −0.0040 (11) | −0.0054 (12) |
C14 | 0.0544 (18) | 0.067 (2) | 0.0446 (17) | −0.0258 (16) | 0.0040 (14) | −0.0045 (15) |
C15 | 0.0518 (17) | 0.0566 (19) | 0.0495 (18) | −0.0250 (14) | −0.0032 (14) | 0.0057 (14) |
C16 | 0.0450 (16) | 0.0456 (17) | 0.0511 (18) | −0.0124 (13) | −0.0039 (13) | −0.0020 (13) |
C17 | 0.0350 (13) | 0.0431 (15) | 0.0411 (15) | −0.0152 (11) | −0.0073 (11) | −0.0021 (11) |
N1—C7 | 1.269 (3) | C7—C17 | 1.480 (4) |
N1—C5 | 1.410 (3) | C7—C8 | 1.500 (4) |
N2—C12 | 1.331 (3) | C8—C9 | 1.384 (4) |
N2—C11 | 1.343 (4) | C8—C12 | 1.398 (4) |
N3—C13 | 1.333 (3) | C9—C10 | 1.385 (4) |
N3—C14 | 1.341 (4) | C9—H9A | 0.9300 |
C1—C2 | 1.380 (5) | C10—C11 | 1.375 (4) |
C1—C6 | 1.381 (5) | C10—H10A | 0.9300 |
C1—H1B | 0.9300 | C11—H11A | 0.9300 |
C2—C3 | 1.369 (5) | C12—C13 | 1.482 (4) |
C2—H2B | 0.9300 | C13—C17 | 1.386 (4) |
C3—C4 | 1.375 (4) | C14—C15 | 1.385 (4) |
C3—H3B | 0.9300 | C14—H14A | 0.9300 |
C4—C5 | 1.385 (4) | C15—C16 | 1.380 (4) |
C4—H4A | 0.9300 | C15—H15A | 0.9300 |
C5—C6 | 1.392 (4) | C16—C17 | 1.379 (4) |
C6—H6A | 0.9300 | C16—H16A | 0.9300 |
C7—N1—C5 | 121.5 (2) | C8—C9—C10 | 117.0 (3) |
C12—N2—C11 | 114.6 (2) | C8—C9—H9A | 121.5 |
C13—N3—C14 | 114.1 (3) | C10—C9—H9A | 121.5 |
C2—C1—C6 | 120.2 (4) | C11—C10—C9 | 120.4 (3) |
C2—C1—H1B | 119.9 | C11—C10—H10A | 119.8 |
C6—C1—H1B | 119.9 | C9—C10—H10A | 119.8 |
C3—C2—C1 | 119.6 (3) | N2—C11—C10 | 124.1 (3) |
C3—C2—H2B | 120.2 | N2—C11—H11A | 117.9 |
C1—C2—H2B | 120.2 | C10—C11—H11A | 117.9 |
C2—C3—C4 | 121.2 (3) | N2—C12—C8 | 125.8 (3) |
C2—C3—H3B | 119.4 | N2—C12—C13 | 125.6 (2) |
C4—C3—H3B | 119.4 | C8—C12—C13 | 108.6 (2) |
C3—C4—C5 | 119.6 (3) | N3—C13—C17 | 125.4 (3) |
C3—C4—H4A | 120.2 | N3—C13—C12 | 126.3 (2) |
C5—C4—H4A | 120.2 | C17—C13—C12 | 108.3 (2) |
C4—C5—C6 | 119.6 (3) | N3—C14—C15 | 124.7 (3) |
C4—C5—N1 | 120.3 (3) | N3—C14—H14A | 117.6 |
C6—C5—N1 | 119.8 (3) | C15—C14—H14A | 117.6 |
C1—C6—C5 | 119.9 (3) | C16—C15—C14 | 119.8 (3) |
C1—C6—H6A | 120.1 | C16—C15—H15A | 120.1 |
C5—C6—H6A | 120.1 | C14—C15—H15A | 120.1 |
N1—C7—C17 | 122.3 (2) | C17—C16—C15 | 116.6 (3) |
N1—C7—C8 | 132.7 (2) | C17—C16—H16A | 121.7 |
C17—C7—C8 | 105.0 (2) | C15—C16—H16A | 121.7 |
C9—C8—C12 | 118.0 (2) | C16—C17—C13 | 119.3 (3) |
C9—C8—C7 | 133.7 (2) | C16—C17—C7 | 130.9 (3) |
C12—C8—C7 | 108.3 (2) | C13—C17—C7 | 109.7 (2) |
C6—C1—C2—C3 | −0.1 (6) | C9—C8—C12—N2 | 0.9 (4) |
C1—C2—C3—C4 | 0.5 (6) | C7—C8—C12—N2 | 179.7 (2) |
C2—C3—C4—C5 | 0.2 (5) | C9—C8—C12—C13 | −179.9 (2) |
C3—C4—C5—C6 | −1.3 (5) | C7—C8—C12—C13 | −1.1 (3) |
C3—C4—C5—N1 | −175.0 (3) | C14—N3—C13—C17 | −0.7 (4) |
C7—N1—C5—C4 | −75.0 (4) | C14—N3—C13—C12 | 177.4 (3) |
C7—N1—C5—C6 | 111.3 (3) | N2—C12—C13—N3 | 1.2 (4) |
C2—C1—C6—C5 | −1.0 (6) | C8—C12—C13—N3 | −177.9 (2) |
C4—C5—C6—C1 | 1.7 (5) | N2—C12—C13—C17 | 179.7 (2) |
N1—C5—C6—C1 | 175.5 (3) | C8—C12—C13—C17 | 0.5 (3) |
C5—N1—C7—C17 | 174.9 (2) | C13—N3—C14—C15 | 0.2 (4) |
C5—N1—C7—C8 | −4.7 (5) | N3—C14—C15—C16 | 0.4 (5) |
N1—C7—C8—C9 | −0.6 (5) | C14—C15—C16—C17 | −0.4 (4) |
C17—C7—C8—C9 | 179.8 (3) | C15—C16—C17—C13 | 0.0 (4) |
N1—C7—C8—C12 | −179.1 (3) | C15—C16—C17—C7 | −177.7 (3) |
C17—C7—C8—C12 | 1.2 (3) | N3—C13—C17—C16 | 0.7 (4) |
C12—C8—C9—C10 | −0.3 (4) | C12—C13—C17—C16 | −177.8 (2) |
C7—C8—C9—C10 | −178.7 (3) | N3—C13—C17—C7 | 178.8 (2) |
C8—C9—C10—C11 | −0.3 (4) | C12—C13—C17—C7 | 0.3 (3) |
C12—N2—C11—C10 | 0.3 (4) | N1—C7—C17—C16 | −2.9 (4) |
C9—C10—C11—N2 | 0.3 (5) | C8—C7—C17—C16 | 176.9 (3) |
C11—N2—C12—C8 | −0.9 (4) | N1—C7—C17—C13 | 179.3 (2) |
C11—N2—C12—C13 | −180.0 (2) | C8—C7—C17—C13 | −1.0 (3) |
Experimental details
Crystal data | |
Chemical formula | C17H11N3 |
Mr | 257.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.1950 (14), 8.5860 (17), 11.876 (2) |
α, β, γ (°) | 80.63 (3), 74.78 (3), 66.46 (3) |
V (Å3) | 647.6 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.20 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.984, 0.996 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2529, 2326, 1642 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.178, 1.02 |
No. of reflections | 2326 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.25 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Glagovich, N., Reed, E., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004a). Acta Cryst. E60, o623–o625. Web of Science CSD CrossRef IUCr Journals Google Scholar
Glagovich, N. M., Reed, E. M., Crundwell, G., Updegraff, J. B. III, Zeller, M. & Hunter, A. D. (2004b). Acta Cryst. E60, o1269–o1270. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Peters, K., Peters, E.-M. & Quast, H. (1998). Z. Kristallogr. New Cryst. Struct. 213, 607–608. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. X. & Rillema, D. P. (1997). Tetrahedron, 37, 12377–12390. CrossRef Web of Science Google Scholar
Wang, C.-X., Wang, P. & Li, Z.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 211–212. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-(4,5-diazafluorenylidene)benzenamine, is one of the important ligands, being utilized to synthesize complexes with interesting photochemical properties (Wang & Rillema, 1997). The crystal structure of 4-methyl-N-(4,5-diazafluorenylidene)benzenamine monohydrate, (II) (Wang et al., 2006) was reported, previously. We report herein the crystal structure of the title compound, (I).
In the molecule of (I) (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, which are comparable with the corresponding values in other fluorenylidene compounds (II), N-fluorenylidene-aniline-benzene (4/1), (III) (Peters et al., 1998), N-(9H-fluoren-9-ylidene)-N-(4-methoxyphenyl)amine, (IV) (Glagovich et al., 2004a) and N-9H-fluoren-9-ylidene-3,4-dimethyl-aniline, (V) (Glagovich et al., 2004b). Rings A (C1–C6), B (N2/C8–C12), C (C7/C8/C12/C13/C17) and D (N3/C13–C17) are, of course, planar. In the 4,5-diazafluorenylidene unit, the dihedral angles between the rings are B/C = 0.29 (3)°, C/D = 2.30 (3)° and B/D = 2.15 (3)°. So, rings B, C and D are nearly coplanar. The coplanar ring system is oriented with respect to ring A at a dihedral angle of 75.75 (3)°, in which it is reported as 65.1 (1)° in (II).
In the crystal structure, the molecules are aligned in the [100] direction, in such a way that neighbouring 4,5-diazafluorenylidene planes face in anti-parallel fashion (Fig. 2), as in (II).