organic compounds
3,3-Dibromo-1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide
aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sagrodha, Pakistan, cDepartment of Chemistry, University of Science and Technology Bannu, Bannu, Pakistan, and dDepartment of Chemistry, University of Sargodha, Sagrodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the molecule of the title compound, C10H9Br2NO3S, the S atom is four-coordinated in distorted tetrahedral configuration. The heterocyclic thiazine ring adopts a twist conformation. An intramolecular C—H⋯O hydrogen bond results in the formation of a non-planar five-membered ring. In the intermolecular C—H⋯O hydrogen bonds link the molecules into infinite chains along the c axis.
Related literature
For related literature, see: Franzén (2000); Misu & Togo (2003); Shafiq et al. (2008); Tahir et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S1600536808017510/hk2472sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808017510/hk2472Isup2.hkl
Compound (I) was prepared by the reaction of (II) (34.0 mg, 0.15 mmol), N-bromosuccinimide (57.0 mg, 0.32 mmol) and dibenzoyl peroxide (2.1 mg, 0.009 mmol) in CCl4 (8 ml) by heating under reflux for 2 h. Crystals suitable for X-ray analysis were obtained by evaporating the solvent slowly at room temperature for about 7 d (m.p. 394-395 K).
The highest peak and deepest hole in the final difference
are located 1.27 and 1.61 Å from Br1 and Br2 atoms, respectively. H atoms were positioned geometrically, with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.Data collection: APEX2 (Bruker, 2007); cell
APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).C10H9Br2NO3S | F(000) = 744 |
Mr = 383.06 | Dx = 2.087 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 708 reflections |
a = 7.7979 (5) Å | θ = 2.3–29.2° |
b = 11.9645 (7) Å | µ = 6.82 mm−1 |
c = 13.1231 (8) Å | T = 296 K |
β = 95.374 (3)° | Prismatic, red |
V = 1218.98 (13) Å3 | 0.15 × 0.12 × 0.10 mm |
Z = 4 |
Bruker KappaAPEXII CCD diffractometer | 3281 independent reflections |
Radiation source: fine-focus sealed tube | 1708 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
Detector resolution: 7.40 pixels mm-1 | θmax = 29.2°, θmin = 2.3° |
ω scans | h = −8→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | k = −16→15 |
Tmin = 0.400, Tmax = 0.508 | l = −17→18 |
14754 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.066 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.221 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1081P)2 + 4.0099P] where P = (Fo2 + 2Fc2)/3 |
3281 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 1.27 e Å−3 |
0 restraints | Δρmin = −1.61 e Å−3 |
C10H9Br2NO3S | V = 1218.98 (13) Å3 |
Mr = 383.06 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7979 (5) Å | µ = 6.82 mm−1 |
b = 11.9645 (7) Å | T = 296 K |
c = 13.1231 (8) Å | 0.15 × 0.12 × 0.10 mm |
β = 95.374 (3)° |
Bruker KappaAPEXII CCD diffractometer | 3281 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1708 reflections with I > 2σ(I) |
Tmin = 0.400, Tmax = 0.508 | Rint = 0.059 |
14754 measured reflections |
R[F2 > 2σ(F2)] = 0.066 | 0 restraints |
wR(F2) = 0.221 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.27 e Å−3 |
3281 reflections | Δρmin = −1.61 e Å−3 |
154 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.97364 (12) | 0.08723 (8) | 0.18987 (7) | 0.0520 (3) | |
Br2 | 0.71557 (15) | −0.05878 (9) | 0.04712 (7) | 0.0616 (4) | |
S1 | 0.5854 (3) | 0.09863 (16) | 0.20346 (14) | 0.0353 (5) | |
O1 | 0.5802 (9) | 0.1912 (5) | 0.1362 (5) | 0.0554 (17) | |
O2 | 0.4378 (7) | 0.0280 (5) | 0.2029 (4) | 0.0427 (14) | |
O3 | 0.7951 (9) | −0.1813 (5) | 0.2399 (5) | 0.0521 (16) | |
N1 | 0.6503 (9) | 0.1398 (5) | 0.3180 (5) | 0.0346 (15) | |
C1 | 0.6964 (10) | 0.0579 (6) | 0.3926 (6) | 0.0296 (16) | |
C2 | 0.6905 (11) | 0.0854 (7) | 0.4974 (6) | 0.0405 (19) | |
H2 | 0.6569 | 0.1565 | 0.5163 | 0.049* | |
C3 | 0.7351 (12) | 0.0054 (9) | 0.5708 (7) | 0.051 (2) | |
H3 | 0.7337 | 0.0242 | 0.6395 | 0.062* | |
C4 | 0.7809 (13) | −0.0996 (8) | 0.5460 (7) | 0.054 (2) | |
H4 | 0.8088 | −0.1523 | 0.5970 | 0.064* | |
C5 | 0.7859 (11) | −0.1275 (7) | 0.4450 (6) | 0.044 (2) | |
H5 | 0.8149 | −0.2001 | 0.4278 | 0.053* | |
C6 | 0.7480 (10) | −0.0488 (6) | 0.3675 (6) | 0.0319 (16) | |
C7 | 0.7694 (10) | −0.0849 (6) | 0.2634 (6) | 0.0347 (17) | |
C8 | 0.7569 (10) | 0.0054 (7) | 0.1794 (6) | 0.0348 (17) | |
C9 | 0.6490 (12) | 0.2600 (6) | 0.3460 (7) | 0.047 (2) | |
H9A | 0.5998 | 0.3023 | 0.2873 | 0.056* | |
H9B | 0.5745 | 0.2700 | 0.4005 | 0.056* | |
C10 | 0.8162 (14) | 0.3057 (8) | 0.3789 (9) | 0.065 (3) | |
H10A | 0.8047 | 0.3832 | 0.3958 | 0.098* | |
H10B | 0.8902 | 0.2984 | 0.3248 | 0.098* | |
H10C | 0.8651 | 0.2657 | 0.4381 | 0.098* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0447 (6) | 0.0622 (6) | 0.0509 (6) | −0.0139 (4) | 0.0134 (4) | −0.0031 (4) |
Br2 | 0.0757 (8) | 0.0722 (7) | 0.0374 (5) | −0.0052 (5) | 0.0077 (5) | −0.0101 (4) |
S1 | 0.0405 (12) | 0.0358 (10) | 0.0293 (10) | 0.0021 (9) | 0.0010 (8) | 0.0063 (8) |
O1 | 0.069 (4) | 0.048 (3) | 0.049 (4) | 0.003 (3) | −0.001 (3) | 0.021 (3) |
O2 | 0.032 (3) | 0.053 (4) | 0.043 (3) | −0.010 (3) | 0.005 (3) | −0.007 (3) |
O3 | 0.074 (5) | 0.035 (3) | 0.047 (4) | 0.009 (3) | 0.010 (3) | −0.009 (3) |
N1 | 0.049 (4) | 0.026 (3) | 0.028 (3) | 0.002 (3) | 0.000 (3) | −0.001 (2) |
C1 | 0.027 (4) | 0.031 (4) | 0.030 (4) | −0.006 (3) | 0.000 (3) | −0.002 (3) |
C2 | 0.041 (5) | 0.050 (5) | 0.031 (4) | −0.003 (4) | 0.001 (4) | −0.012 (4) |
C3 | 0.057 (6) | 0.066 (6) | 0.032 (4) | −0.012 (5) | 0.005 (4) | −0.005 (4) |
C4 | 0.056 (6) | 0.060 (6) | 0.043 (5) | −0.004 (5) | −0.003 (4) | 0.020 (4) |
C5 | 0.046 (5) | 0.044 (5) | 0.044 (5) | 0.000 (4) | 0.009 (4) | 0.014 (4) |
C6 | 0.030 (4) | 0.034 (4) | 0.033 (4) | −0.001 (3) | 0.006 (3) | −0.004 (3) |
C7 | 0.031 (4) | 0.035 (4) | 0.038 (4) | 0.001 (3) | 0.000 (3) | 0.000 (3) |
C8 | 0.037 (5) | 0.040 (4) | 0.027 (4) | −0.008 (4) | 0.004 (3) | −0.004 (3) |
C9 | 0.058 (6) | 0.026 (4) | 0.056 (5) | 0.013 (4) | 0.005 (4) | 0.000 (4) |
C10 | 0.069 (7) | 0.036 (5) | 0.091 (8) | −0.011 (5) | 0.008 (6) | −0.011 (5) |
Br1—C8 | 1.947 (8) | C3—H3 | 0.9300 |
Br2—C8 | 1.898 (7) | C4—C5 | 1.371 (13) |
S1—O1 | 1.415 (6) | C4—H4 | 0.9300 |
S1—O2 | 1.428 (6) | C5—C6 | 1.397 (11) |
S1—N1 | 1.617 (6) | C5—H5 | 0.9300 |
S1—C8 | 1.792 (8) | C6—C7 | 1.457 (11) |
O3—C7 | 1.215 (9) | C7—C8 | 1.540 (11) |
N1—C1 | 1.408 (9) | C9—C10 | 1.442 (14) |
N1—C9 | 1.486 (9) | C9—H9A | 0.9700 |
C1—C6 | 1.388 (10) | C9—H9B | 0.9700 |
C1—C2 | 1.418 (11) | C10—H10A | 0.9600 |
C2—C3 | 1.380 (13) | C10—H10B | 0.9600 |
C2—H2 | 0.9300 | C10—H10C | 0.9600 |
C3—C4 | 1.354 (14) | ||
O1—S1—O2 | 119.0 (4) | C1—C6—C5 | 119.6 (7) |
O1—S1—N1 | 109.3 (4) | C1—C6—C7 | 123.8 (7) |
O2—S1—N1 | 111.5 (3) | C5—C6—C7 | 116.6 (7) |
O1—S1—C8 | 110.8 (4) | O3—C7—C6 | 123.7 (7) |
O2—S1—C8 | 104.2 (4) | O3—C7—C8 | 119.1 (7) |
N1—S1—C8 | 100.3 (3) | C6—C7—C8 | 117.3 (6) |
C1—N1—C9 | 120.6 (6) | C7—C8—S1 | 108.0 (5) |
C1—N1—S1 | 118.2 (5) | C7—C8—Br2 | 111.4 (5) |
C9—N1—S1 | 121.1 (5) | S1—C8—Br2 | 110.3 (4) |
C6—C1—N1 | 122.4 (7) | C7—C8—Br1 | 107.8 (5) |
C6—C1—C2 | 118.7 (7) | S1—C8—Br1 | 109.4 (4) |
N1—C1—C2 | 118.9 (7) | Br2—C8—Br1 | 109.9 (4) |
C3—C2—C1 | 119.1 (8) | C10—C9—N1 | 114.5 (7) |
C3—C2—H2 | 120.4 | C10—C9—H9A | 108.6 |
C1—C2—H2 | 120.4 | N1—C9—H9A | 108.6 |
C4—C3—C2 | 122.1 (8) | C10—C9—H9B | 108.6 |
C4—C3—H3 | 119.0 | N1—C9—H9B | 108.6 |
C2—C3—H3 | 119.0 | H9A—C9—H9B | 107.6 |
C3—C4—C5 | 119.4 (8) | C9—C10—H10A | 109.5 |
C3—C4—H4 | 120.3 | C9—C10—H10B | 109.5 |
C5—C4—H4 | 120.3 | H10A—C10—H10B | 109.5 |
C4—C5—C6 | 121.1 (8) | C9—C10—H10C | 109.5 |
C4—C5—H5 | 119.5 | H10A—C10—H10C | 109.5 |
C6—C5—H5 | 119.5 | H10B—C10—H10C | 109.5 |
O1—S1—N1—C1 | −167.9 (6) | C1—C6—C7—O3 | −171.2 (8) |
O2—S1—N1—C1 | 58.5 (7) | C5—C6—C7—O3 | 10.1 (12) |
C8—S1—N1—C1 | −51.4 (6) | C1—C6—C7—C8 | 8.3 (11) |
O1—S1—N1—C9 | 16.6 (8) | C5—C6—C7—C8 | −170.4 (7) |
O2—S1—N1—C9 | −117.0 (7) | O3—C7—C8—S1 | 139.1 (7) |
C8—S1—N1—C9 | 133.1 (7) | C6—C7—C8—S1 | −40.4 (8) |
C9—N1—C1—C6 | −160.8 (7) | O3—C7—C8—Br2 | 17.8 (10) |
S1—N1—C1—C6 | 23.7 (10) | C6—C7—C8—Br2 | −161.7 (6) |
C9—N1—C1—C2 | 19.1 (11) | O3—C7—C8—Br1 | −102.8 (8) |
S1—N1—C1—C2 | −156.4 (6) | C6—C7—C8—Br1 | 77.7 (7) |
C6—C1—C2—C3 | −0.3 (12) | O1—S1—C8—C7 | 173.0 (5) |
N1—C1—C2—C3 | 179.8 (8) | O2—S1—C8—C7 | −57.8 (6) |
C1—C2—C3—C4 | −1.5 (14) | N1—S1—C8—C7 | 57.7 (6) |
C2—C3—C4—C5 | 1.0 (15) | O1—S1—C8—Br2 | −65.0 (5) |
C3—C4—C5—C6 | 1.4 (14) | O2—S1—C8—Br2 | 64.1 (4) |
N1—C1—C6—C5 | −177.6 (7) | N1—S1—C8—Br2 | 179.6 (4) |
C2—C1—C6—C5 | 2.6 (11) | O1—S1—C8—Br1 | 55.9 (5) |
N1—C1—C6—C7 | 3.7 (12) | O2—S1—C8—Br1 | −174.9 (4) |
C2—C1—C6—C7 | −176.1 (8) | N1—S1—C8—Br1 | −59.4 (4) |
C4—C5—C6—C1 | −3.2 (13) | C1—N1—C9—C10 | 65.8 (11) |
C4—C5—C6—C7 | 175.6 (8) | S1—N1—C9—C10 | −118.8 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.52 | 3.390 (10) | 157 |
C9—H9A···O1 | 0.97 | 2.38 | 2.876 (11) | 111 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H9Br2NO3S |
Mr | 383.06 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 7.7979 (5), 11.9645 (7), 13.1231 (8) |
β (°) | 95.374 (3) |
V (Å3) | 1218.98 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.82 |
Crystal size (mm) | 0.15 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker KappaAPEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.400, 0.508 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14754, 3281, 1708 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.221, 1.03 |
No. of reflections | 3281 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.27, −1.61 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).
S1—O1 | 1.415 (6) | S1—N1 | 1.617 (6) |
S1—O2 | 1.428 (6) | S1—C8 | 1.792 (8) |
O1—S1—O2 | 119.0 (4) | O1—S1—C8 | 110.8 (4) |
O1—S1—N1 | 109.3 (4) | O2—S1—C8 | 104.2 (4) |
O2—S1—N1 | 111.5 (3) | N1—S1—C8 | 100.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1i | 0.93 | 2.52 | 3.390 (10) | 157.00 |
C9—H9A···O1 | 0.97 | 2.38 | 2.876 (11) | 111.00 |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
Muhammad Shafiq greatfully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program.
References
Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Franzén, R. G. (2000). J. Comb. Chem. 2, 195–214. Web of Science PubMed Google Scholar
Misu, Y. & Togo, H. (2003). Org. Biol. Chem. 1, 1342–1346. Web of Science CrossRef CAS Google Scholar
Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis of heterocyclic system is of continuing interest because a large number of biologically active molecules contain heterocyclic rings (Franzén, 2000). 2,1-Benzothiazine is a relatively unexplored ring system with respect to both its synthesis and biological activity, in which it belongs to an important heterocyclic class of compounds, although it finds a number of applications in medicinal chemistry. The derivatives of 2,1-benzothiazine are used as drugs for heart diseases and also show lipoxygenase inhibition activity (Misu & Togo, 2003). Recently we have reported the crystal structures of 1-ethyl-1H -2,1-benzothiazin-4(3H) one 2,2-dioxide, (II) (Shafiq et al., 2008) and 1-methyl-1H-2,1-benzothiazin-4(3H) one 2,2-dioxide, (III) (Tahir et al., 2008), in which they contain the same heterocyclic ring. We report herein the syntesis and crystal structure of the title compound, (I), which is obtained from the bromination of (II).
In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges, which are comparable with the corresponding values in (II). The S1-N1 [1.617 (6) Å], S1-C8 [1.792 (8) Å] and C7-C8 [1.540 (11) Å] bonds in (I) are reported as 1.6405 (15), 1.750 (2) and 1.510 (3) Å, respectively, in (II). The S atom is four-coordinated in distorted tetrahedral configuration (Table 1) by one N and one C atoms of the heterocyclic ring and two O atoms. Ring A (C1-C6) is, of course, planar, and it is oriented with respect to (S1/O1/O2) and (C8/Br1/Br2) planes at dihedral angles of 78.44 (32)° and 77.79 (28)°, respectively. Ring B (S1/N1/C1/C6-C8) adopts twisted conformation, having total puckering amplitude, QT, of 0.763 (2) Å (Cremer & Pople, 1975). The intra- molecular C-H···O hydrogen bond (Table 2) results in the formation of a non-planar five-membered ring C (O1/S1/N1/C9/H9A).
In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 2) link the molecules into infinine chains along the c axis (Fig. 2), in which they may be effective in the stabilization of the structure.