metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m946-m947

Bis[2-(3-chloro­benzyl­­idene)propanoato-κ2O,O′]di­ethyl­tin(IV)

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bUniversity of Sargodha, Department of Physics, Sagrodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 11 June 2008; accepted 17 June 2008; online 21 June 2008)

In the mol­ecule of the title compound, [Sn(C2H5)2(C10H8ClO2)2], the Sn atom is six-coordinated in a distorted tetra­gonal–bipyramidal configuration by four O atoms in the equatorial plane and two C atoms in the axial positions. Intra­molecular C—H⋯O hydrogen bonds result in the formation of two planar and two non-planar five-membered rings; the latter adopt envelope conformations. There are weak ππ inter­actions between aromatic rings, with centroid-to-centroid distances of 3.796 (2) and 4.171 (2) Å. There is also a single C—Cl⋯π inter­action [C—Cl = 1.740 (4), Cl⋯π = 3.795 (2) C⋯π = 3.697 (4) Åand C—Cl⋯\p =73.45 (11)°].

Related literature

For general background, see: Xie et al. (1996[Xie, Q., Yang, Z. & Jiang, L. (1996). Main Group Met. Chem. 19, 509-520.]); Nath et al. (2001[Nath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99-149.]); Crowe (1989[Crowe, A. J. (1989). Metal-Based Antitumour Drugs, 1, 103-149.]); Gielen et al. (2000[Gielen, M., Biesemans, M., de Vos, D. & Willem, R. (2000). J. Inorg. Biochem. 79, 139-145.]). For related literature, see: Hanif et al. (2007[Hanif, M., Hussain, M., Ali, S., Bhatti, M. H. & Evans, H. S. (2007). Anal. Sci. 23, x165-x166.]); Parvez et al. (1997[Parvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211-1213.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C2H5)2(C10H8ClO2)2]

  • Mr = 568.04

  • Triclinic, [P \overline 1]

  • a = 7.5171 (3) Å

  • b = 12.8388 (5) Å

  • c = 12.8712 (5) Å

  • α = 98.724 (2)°

  • β = 92.250 (2)°

  • γ = 100.148 (2)°

  • V = 1205.84 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.756, Tmax = 0.819

  • 20475 measured reflections

  • 4718 independent reflections

  • 4364 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.090

  • S = 1.23

  • 4718 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn—C1 2.110 (3)
Sn—C3 2.113 (4)
Sn—O3 2.1342 (19)
Sn—O1 2.137 (2)
Sn—O2 2.477 (2)
Sn—O4 2.556 (2)
C1—Sn—C3 154.28 (15)
C1—Sn—O3 98.88 (12)
C3—Sn—O3 101.22 (13)
C1—Sn—O1 98.94 (11)
C3—Sn—O1 99.02 (12)
O3—Sn—O1 83.85 (8)
C1—Sn—O2 86.19 (12)
C3—Sn—O2 88.69 (13)
O3—Sn—O2 139.87 (8)
O1—Sn—O2 56.10 (7)
C1—Sn—O4 89.58 (11)
C3—Sn—O4 89.11 (12)
O3—Sn—O4 54.58 (7)
O1—Sn—O4 138.42 (7)
O2—Sn—O4 165.46 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2 0.96 2.31 2.780 (5) 109
C8—H8⋯O1 0.93 2.30 2.736 (3) 108
C17—H17A⋯O3 0.96 2.31 2.749 (4) 107
C18—H18⋯O4 0.93 2.37 2.785 (3) 107

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organotin compounds have attracted much interest owing to their potential use in industry and agriculture (Xie et al., 1996; Nath et al., 2001). In the pharmaceutical industry, a number of dialkyltin carboxylate derivatives are being used as efficient antitumor and anticancer agents (Crowe, 1989; Gielen et al., 2000). In continuation of our studies on the structural aspects of organotin(IV) carboxylates, we report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the Sn atom is six-coordinated in distorted tetragonal bipyramidal configuration (Table 1) by four O atoms in the equatorial plane and two C atoms in the apical positions. The bond lengths and angles are within normal ranges, which are comparable with the corresponding values in bis(3,4-methylenedioxybenzoyl)diethyltin(IV), (II) (Hanif et al., 2007) and diethylbis[3-(2-thienyl)-2-propenoato-O,O']tin(IV), (III) (Parvez et al., 1997). The Sn—C1 [2.110 (3) Å] and Sn—C3 [2.113 (4) Å] bonds in (I) are reported as 2.137 (6) and 2.138 (7) Å in (II) and 2.155 (2) Å in (III). On the other hand, the Sn—O bonds are in the range of [2.1342 (19)–2.556 (2) Å] in (I). They are reported as in the ranges of [2.142 (4)–2.544 (4) Å] in (II) and [2.105 (5) and 2.538 (6) Å] in (III).

Rings A (Sn/O1/O2/C5), B (Sn/O3/O4/C15), C (C9–C14) and D (C19–C24) are, of course, planar, and the dihedral angles between them are A/B = 3.05 (11)°, A/C = 2.10 (12)°, A/D = 1.58 (10)°, B/C = 1.73 (12)°, B/D = 4.41 (11)° and C/D = 3.68 (13)°. So, they are nearly coplanar. The intramolecular C—H···O hydrogen bonds (Table 2) result in the formation of two planar and two non-planar five-membered rings: E (O1/C5/C6/C8/H8), F (O4/C15/C16/C18/H18), G (O2/C5–C7/H7A) and H (O3/C15–C17/H17A), respectively. Rings G and H adopt envelope conformations, with H7A and H17A atoms displaced by 0.184 and 0.356 Å from the planes of the other ring atoms, respectively.

In the crystal structure, the molecules are elongated along the c axis and stacked along the a axis (Fig. 2). The weak ππ interactions between aromatic rings CgC···CgDi and CgC···CgDii [symmetry codes: (i) x, y, z - 1 and (ii) x + 1, y, z - 1] may be effective in the stabilization of the structure, with centroid–centroid distances of 3.796 (2) and 4.171 (2) Å, respectively. There is also a single C—Cl···π interaction, C21—Cl2···CgCiii [symmetry code: (iii) x - 1, y, z + 1], at a distance of 3.797 (2) Å.

Related literature top

For general background, see: Xie et al. (1996); Nath et al. (2001); Crowe (1989); Gielen et al. (2000). For related literature, see: Hanif et al. (2007); Parvez et al. (1997).

Experimental top

The title compound (I), was prepared by the reaction of stoichiometric amounts of the sodium 3-(3-chlorophenyl)-2-methylacrylate (0.5 g, 2.29 mmol) and diethyltin(IV) dichloride (0.28 g, 1.14 mmol) in dry toluene (100 ml). The reaction mixture was refluxed for 7–8 h, and then allowed to stand overnight. The residual sodium salt was removed by filtration and the solvent was evaporated under reduced pressure leaving a solid residue. Crystals suitable for X-ray analysis were obtained by the recrystallization of the obtained solid residue from a mixture of chloroform/n-hexane (4:1) (yield 77%).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A packing diagram of (I).
Bis[2-(3-chlorobenzylidene)propanoato-κ2O,O']diethyltin(IV) top
Crystal data top
[Sn(C2H5)2(C10H8ClO2)2]Z = 2
Mr = 568.04F(000) = 572
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5171 (3) ÅCell parameters from 2981 reflections
b = 12.8388 (5) Åθ = 1.6–26.0°
c = 12.8712 (5) ŵ = 1.31 mm1
α = 98.724 (2)°T = 296 K
β = 92.250 (2)°Prism, colourless
γ = 100.148 (2)°0.25 × 0.18 × 0.15 mm
V = 1205.84 (8) Å3
Data collection top
Bruker KappaAPEXII CCD
diffractometer
4718 independent reflections
Radiation source: fine-focus sealed tube4364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.6 pixels mm-1θmax = 26.0°, θmin = 1.6°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.756, Tmax = 0.819l = 1515
20475 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.4634P]
where P = (Fo2 + 2Fc2)/3
4718 reflections(Δ/σ)max = 0.002
281 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Sn(C2H5)2(C10H8ClO2)2]γ = 100.148 (2)°
Mr = 568.04V = 1205.84 (8) Å3
Triclinic, P1Z = 2
a = 7.5171 (3) ÅMo Kα radiation
b = 12.8388 (5) ŵ = 1.31 mm1
c = 12.8712 (5) ÅT = 296 K
α = 98.724 (2)°0.25 × 0.18 × 0.15 mm
β = 92.250 (2)°
Data collection top
Bruker KappaAPEXII CCD
diffractometer
4718 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4364 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.819Rint = 0.030
20475 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.23Δρmax = 1.19 e Å3
4718 reflectionsΔρmin = 0.70 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.50876 (2)0.902092 (13)0.344408 (13)0.03652 (9)
Cl10.66380 (16)0.66005 (12)0.40308 (7)0.0845 (4)
Cl20.09702 (18)0.43808 (10)0.81556 (10)0.0902 (4)
O10.5016 (3)0.79188 (16)0.20149 (16)0.0478 (5)
O20.6318 (4)0.95295 (18)0.17974 (18)0.0543 (6)
O30.3643 (3)0.76594 (16)0.40138 (16)0.0457 (5)
O40.4056 (3)0.90052 (16)0.53109 (17)0.0474 (5)
C10.2876 (5)0.9737 (3)0.3070 (3)0.0521 (8)
H1A0.21220.97740.36640.063*
H1B0.33331.04660.29640.063*
C20.1719 (5)0.9147 (4)0.2096 (3)0.0667 (10)
H2A0.06360.94400.20380.100*
H2B0.14020.84000.21500.100*
H2C0.23850.92260.14830.100*
C30.7761 (5)0.9039 (3)0.4028 (3)0.0589 (9)
H3A0.85830.95710.37330.071*
H3B0.78500.92550.47860.071*
C40.8352 (7)0.7972 (4)0.3775 (5)0.0894 (15)
H4A0.95710.80320.40610.134*
H4B0.82970.77600.30250.134*
H4C0.75630.74430.40790.134*
C50.5747 (4)0.8565 (2)0.1415 (2)0.0406 (6)
C60.5873 (5)0.8162 (2)0.0280 (2)0.0427 (7)
C70.6717 (7)0.8984 (3)0.0344 (3)0.0737 (12)
H7A0.68250.96850.00650.111*
H7B0.59730.89390.09790.111*
H7C0.78980.88570.05210.111*
C80.5194 (4)0.7132 (3)0.0069 (2)0.0423 (6)
H80.46790.67570.04420.051*
C90.5114 (4)0.6485 (3)0.1115 (2)0.0455 (7)
C100.5829 (5)0.6840 (3)0.2001 (2)0.0511 (8)
H100.63800.75530.19700.061*
C110.5719 (5)0.6128 (4)0.2934 (3)0.0601 (10)
C120.4924 (7)0.5072 (4)0.3012 (3)0.0790 (14)
H120.48730.46050.36440.095*
C130.4207 (7)0.4721 (3)0.2139 (3)0.0803 (13)
H130.36650.40060.21770.096*
C140.4278 (6)0.5416 (3)0.1206 (3)0.0587 (9)
H140.37580.51660.06260.070*
C150.3402 (4)0.8045 (2)0.4963 (2)0.0361 (6)
C160.2341 (4)0.7320 (2)0.5609 (2)0.0348 (5)
C170.1529 (5)0.6225 (2)0.5045 (3)0.0540 (8)
H17A0.14800.62270.42990.081*
H17B0.03260.60210.52600.081*
H17C0.22590.57220.52130.081*
C180.2206 (4)0.7709 (2)0.6619 (2)0.0391 (6)
H180.27530.84240.68180.047*
C190.1352 (4)0.7213 (2)0.7467 (2)0.0402 (6)
C200.0638 (4)0.6128 (3)0.7401 (2)0.0470 (7)
H200.06500.56620.67750.056*
C210.0091 (5)0.5743 (3)0.8270 (3)0.0565 (9)
C220.0125 (5)0.6390 (4)0.9205 (3)0.0652 (10)
H220.06140.61140.97800.078*
C230.0583 (5)0.7464 (4)0.9278 (3)0.0671 (10)
H230.05690.79200.99110.081*
C240.1312 (5)0.7877 (3)0.8426 (3)0.0540 (8)
H240.17820.86060.84920.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.04917 (14)0.03108 (12)0.02580 (12)0.00113 (8)0.00705 (8)0.00225 (8)
Cl10.0831 (7)0.1456 (11)0.0321 (4)0.0466 (7)0.0138 (4)0.0048 (5)
Cl20.1093 (9)0.0813 (7)0.0767 (7)0.0200 (6)0.0012 (6)0.0474 (6)
O10.0790 (15)0.0352 (10)0.0261 (10)0.0024 (10)0.0124 (10)0.0018 (8)
O20.0764 (16)0.0401 (12)0.0402 (12)0.0021 (10)0.0138 (11)0.0007 (9)
O30.0634 (13)0.0367 (10)0.0321 (11)0.0046 (9)0.0106 (9)0.0043 (8)
O40.0638 (13)0.0315 (10)0.0405 (12)0.0086 (9)0.0062 (10)0.0047 (9)
C10.061 (2)0.0546 (18)0.0385 (17)0.0111 (15)0.0012 (14)0.0024 (14)
C20.063 (2)0.088 (3)0.045 (2)0.000 (2)0.0004 (17)0.0129 (19)
C30.0510 (19)0.067 (2)0.050 (2)0.0071 (16)0.0010 (15)0.0108 (17)
C40.073 (3)0.081 (3)0.122 (4)0.019 (2)0.011 (3)0.036 (3)
C50.0529 (17)0.0384 (15)0.0306 (14)0.0095 (12)0.0083 (12)0.0036 (12)
C60.0586 (18)0.0459 (16)0.0265 (14)0.0158 (13)0.0098 (12)0.0062 (12)
C70.126 (4)0.051 (2)0.046 (2)0.010 (2)0.037 (2)0.0112 (16)
C80.0534 (17)0.0437 (16)0.0294 (14)0.0123 (13)0.0042 (12)0.0003 (12)
C90.0540 (18)0.0541 (18)0.0301 (15)0.0211 (14)0.0025 (12)0.0004 (13)
C100.0588 (19)0.067 (2)0.0301 (15)0.0242 (16)0.0020 (13)0.0016 (14)
C110.063 (2)0.091 (3)0.0299 (16)0.038 (2)0.0002 (15)0.0032 (17)
C120.111 (4)0.083 (3)0.043 (2)0.046 (3)0.011 (2)0.018 (2)
C130.125 (4)0.057 (2)0.055 (2)0.026 (2)0.015 (2)0.0098 (19)
C140.084 (3)0.0500 (19)0.0409 (18)0.0174 (17)0.0077 (17)0.0008 (14)
C150.0410 (14)0.0333 (13)0.0320 (14)0.0003 (11)0.0025 (11)0.0066 (11)
C160.0393 (14)0.0300 (12)0.0328 (14)0.0005 (10)0.0028 (11)0.0053 (10)
C170.076 (2)0.0369 (15)0.0392 (17)0.0146 (14)0.0138 (16)0.0004 (13)
C180.0462 (15)0.0331 (13)0.0341 (15)0.0012 (11)0.0006 (12)0.0037 (11)
C190.0386 (14)0.0491 (16)0.0308 (14)0.0019 (12)0.0010 (11)0.0073 (12)
C200.0544 (18)0.0515 (17)0.0332 (15)0.0008 (14)0.0002 (13)0.0134 (13)
C210.0504 (18)0.072 (2)0.049 (2)0.0015 (16)0.0001 (15)0.0309 (17)
C220.056 (2)0.102 (3)0.0405 (19)0.005 (2)0.0084 (15)0.031 (2)
C230.069 (2)0.099 (3)0.0312 (17)0.012 (2)0.0082 (16)0.0060 (18)
C240.0563 (19)0.062 (2)0.0388 (17)0.0046 (16)0.0042 (14)0.0010 (15)
Geometric parameters (Å, º) top
Sn—C12.110 (3)C8—C91.464 (4)
Sn—C32.113 (4)C8—H80.9300
Sn—O32.1342 (19)C9—C101.385 (5)
Sn—O12.137 (2)C9—C141.391 (5)
Sn—O22.477 (2)C10—C111.385 (5)
Sn—O42.556 (2)C10—H100.9300
Cl1—C111.740 (4)C11—C121.368 (7)
Cl2—C211.739 (4)C12—C131.368 (7)
O1—C51.286 (4)C12—H120.9300
O2—C51.253 (4)C13—C141.376 (5)
O3—C151.279 (3)C13—H130.9300
O4—C151.251 (3)C14—H140.9300
C1—C21.516 (5)C15—C161.489 (4)
C1—H1A0.9700C16—C181.334 (4)
C1—H1B0.9700C16—C171.494 (4)
C2—H2A0.9600C17—H17A0.9600
C2—H2B0.9600C17—H17B0.9600
C2—H2C0.9600C17—H17C0.9600
C3—C41.507 (6)C18—C191.460 (4)
C3—H3A0.9700C18—H180.9300
C3—H3B0.9700C19—C201.390 (4)
C4—H4A0.9600C19—C241.394 (4)
C4—H4B0.9600C20—C211.384 (4)
C4—H4C0.9600C20—H200.9300
C5—C61.486 (4)C21—C221.358 (6)
C6—C81.333 (5)C22—C231.375 (6)
C6—C71.491 (5)C22—H220.9300
C7—H7A0.9600C23—C241.380 (5)
C7—H7B0.9600C23—H230.9300
C7—H7C0.9600C24—H240.9300
C1—Sn—C3154.28 (15)C6—C8—C9131.5 (3)
C1—Sn—O398.88 (12)C6—C8—H8114.3
C3—Sn—O3101.22 (13)C9—C8—H8114.3
C1—Sn—O198.94 (11)C10—C9—C14118.0 (3)
C3—Sn—O199.02 (12)C10—C9—C8125.7 (3)
O3—Sn—O183.85 (8)C14—C9—C8116.3 (3)
C1—Sn—O286.19 (12)C11—C10—C9119.6 (4)
C3—Sn—O288.69 (13)C11—C10—H10120.2
O3—Sn—O2139.87 (8)C9—C10—H10120.2
O1—Sn—O256.10 (7)C12—C11—C10122.0 (4)
C1—Sn—O489.58 (11)C12—C11—Cl1119.6 (3)
C3—Sn—O489.11 (12)C10—C11—Cl1118.4 (4)
O3—Sn—O454.58 (7)C11—C12—C13118.5 (4)
O1—Sn—O4138.42 (7)C11—C12—H12120.8
O2—Sn—O4165.46 (7)C13—C12—H12120.8
C5—O1—Sn99.75 (17)C12—C13—C14120.7 (4)
C5—O2—Sn84.87 (18)C12—C13—H13119.7
C15—O3—Sn102.54 (16)C14—C13—H13119.7
C15—O4—Sn83.54 (17)C13—C14—C9121.2 (4)
C2—C1—Sn113.8 (3)C13—C14—H14119.4
C2—C1—H1A108.8C9—C14—H14119.4
Sn—C1—H1A108.8O4—C15—O3119.3 (2)
C2—C1—H1B108.8O4—C15—C16122.7 (3)
Sn—C1—H1B108.8O3—C15—C16118.0 (2)
H1A—C1—H1B107.7C18—C16—C15117.4 (2)
C1—C2—H2A109.5C18—C16—C17126.9 (3)
C1—C2—H2B109.5C15—C16—C17115.7 (2)
H2A—C2—H2B109.5C16—C17—H17A109.5
C1—C2—H2C109.5C16—C17—H17B109.5
H2A—C2—H2C109.5H17A—C17—H17B109.5
H2B—C2—H2C109.5C16—C17—H17C109.5
C4—C3—Sn113.5 (3)H17A—C17—H17C109.5
C4—C3—H3A108.9H17B—C17—H17C109.5
Sn—C3—H3A108.9C16—C18—C19131.5 (3)
C4—C3—H3B108.9C16—C18—H18114.2
Sn—C3—H3B108.9C19—C18—H18114.2
H3A—C3—H3B107.7C20—C19—C24117.8 (3)
C3—C4—H4A109.5C20—C19—C18125.0 (3)
C3—C4—H4B109.5C24—C19—C18117.1 (3)
H4A—C4—H4B109.5C21—C20—C19119.9 (3)
C3—C4—H4C109.5C21—C20—H20120.1
H4A—C4—H4C109.5C19—C20—H20120.1
H4B—C4—H4C109.5C22—C21—C20122.2 (3)
O2—C5—O1119.2 (3)C22—C21—Cl2119.3 (3)
O2—C5—C6121.2 (3)C20—C21—Cl2118.4 (3)
O1—C5—C6119.6 (3)C21—C22—C23118.3 (3)
C8—C6—C5117.4 (3)C21—C22—H22120.9
C8—C6—C7127.5 (3)C23—C22—H22120.9
C5—C6—C7115.1 (3)C22—C23—C24121.0 (4)
C6—C7—H7A109.5C22—C23—H23119.5
C6—C7—H7B109.5C24—C23—H23119.5
H7A—C7—H7B109.5C23—C24—C19120.8 (4)
C6—C7—H7C109.5C23—C24—H24119.6
H7A—C7—H7C109.5C19—C24—H24119.6
H7B—C7—H7C109.5
C1—Sn—O1—C577.4 (2)O1—C5—C6—C7179.1 (3)
C3—Sn—O1—C584.1 (2)C5—C6—C8—C9179.2 (3)
O3—Sn—O1—C5175.5 (2)C7—C6—C8—C92.6 (6)
O2—Sn—O1—C51.84 (18)C6—C8—C9—C102.1 (6)
O4—Sn—O1—C5176.96 (16)C6—C8—C9—C14179.4 (3)
C1—Sn—O2—C5101.6 (2)C14—C9—C10—C111.0 (5)
C3—Sn—O2—C5103.7 (2)C8—C9—C10—C11177.4 (3)
O3—Sn—O2—C52.3 (3)C9—C10—C11—C120.2 (5)
O1—Sn—O2—C51.86 (18)C9—C10—C11—Cl1179.8 (2)
O4—Sn—O2—C5175.0 (3)C10—C11—C12—C130.6 (6)
C1—Sn—O3—C1581.7 (2)Cl1—C11—C12—C13179.8 (3)
C3—Sn—O3—C1582.2 (2)C11—C12—C13—C140.2 (7)
O1—Sn—O3—C15179.83 (19)C12—C13—C14—C91.5 (7)
O2—Sn—O3—C15176.35 (16)C10—C9—C14—C131.9 (5)
O4—Sn—O3—C151.39 (17)C8—C9—C14—C13176.8 (4)
C1—Sn—O4—C1599.8 (2)Sn—O4—C15—O32.2 (3)
C3—Sn—O4—C15105.9 (2)Sn—O4—C15—C16177.8 (3)
O3—Sn—O4—C151.40 (17)Sn—O3—C15—O42.7 (3)
O1—Sn—O4—C153.2 (2)Sn—O3—C15—C16177.3 (2)
O2—Sn—O4—C15172.8 (3)O4—C15—C16—C184.6 (4)
C3—Sn—C1—C2146.1 (3)O3—C15—C16—C18175.4 (3)
O3—Sn—C1—C272.8 (3)O4—C15—C16—C17175.1 (3)
O1—Sn—C1—C212.3 (3)O3—C15—C16—C174.8 (4)
O2—Sn—C1—C267.1 (3)C15—C16—C18—C19177.1 (3)
O4—Sn—C1—C2126.8 (3)C17—C16—C18—C193.2 (6)
C1—Sn—C3—C4168.7 (3)C16—C18—C19—C208.0 (5)
O3—Sn—C3—C450.5 (3)C16—C18—C19—C24174.4 (3)
O1—Sn—C3—C434.9 (3)C24—C19—C20—C210.4 (5)
O2—Sn—C3—C490.3 (3)C18—C19—C20—C21178.0 (3)
O4—Sn—C3—C4104.1 (3)C19—C20—C21—C220.6 (5)
Sn—O2—C5—O12.9 (3)C19—C20—C21—Cl2180.0 (2)
Sn—O2—C5—C6176.1 (3)C20—C21—C22—C230.4 (6)
Sn—O1—C5—O23.5 (3)Cl2—C21—C22—C23179.8 (3)
Sn—O1—C5—C6175.6 (2)C21—C22—C23—C240.1 (6)
O2—C5—C6—C8178.4 (3)C22—C23—C24—C190.1 (6)
O1—C5—C6—C80.6 (5)C20—C19—C24—C230.1 (5)
O2—C5—C6—C70.0 (5)C18—C19—C24—C23177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.962.312.780 (5)109
C8—H8···O10.932.302.736 (3)108
C17—H17A···O30.962.312.749 (4)107
C18—H18···O40.932.372.785 (3)107

Experimental details

Crystal data
Chemical formula[Sn(C2H5)2(C10H8ClO2)2]
Mr568.04
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5171 (3), 12.8388 (5), 12.8712 (5)
α, β, γ (°)98.724 (2), 92.250 (2), 100.148 (2)
V3)1205.84 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.756, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
20475, 4718, 4364
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.090, 1.23
No. of reflections4718
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.70

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Sn—C12.110 (3)Sn—O12.137 (2)
Sn—C32.113 (4)Sn—O22.477 (2)
Sn—O32.1342 (19)Sn—O42.556 (2)
C1—Sn—C3154.28 (15)O3—Sn—O2139.87 (8)
C1—Sn—O398.88 (12)O1—Sn—O256.10 (7)
C3—Sn—O3101.22 (13)C1—Sn—O489.58 (11)
C1—Sn—O198.94 (11)C3—Sn—O489.11 (12)
C3—Sn—O199.02 (12)O3—Sn—O454.58 (7)
O3—Sn—O183.85 (8)O1—Sn—O4138.42 (7)
C1—Sn—O286.19 (12)O2—Sn—O4165.46 (7)
C3—Sn—O288.69 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.962.312.780 (5)109.00
C8—H8···O10.932.302.736 (3)108.00
C17—H17A···O30.962.312.749 (4)107.00
C18—H18···O40.932.372.785 (3)107.00
 

Acknowledgements

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for funding the purchase of the diffractometer and for financial support to NM for a PhD under the Indigenous Scholarship Scheme.

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCrowe, A. J. (1989). Metal-Based Antitumour Drugs, 1, 103–149.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGielen, M., Biesemans, M., de Vos, D. & Willem, R. (2000). J. Inorg. Biochem. 79, 139–145.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHanif, M., Hussain, M., Ali, S., Bhatti, M. H. & Evans, H. S. (2007). Anal. Sci. 23, x165–x166.  CAS Google Scholar
First citationNath, M., Pokharia, S. & Yadav, R. (2001). Coord. Chem. Rev. 215, 99–149.  Web of Science CrossRef CAS Google Scholar
First citationParvez, M., Ali, S., Masood, T. M., Mazhar, M. & Danish, M. (1997). Acta Cryst. C53, 1211–1213.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Q., Yang, Z. & Jiang, L. (1996). Main Group Met. Chem. 19, 509–520.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m946-m947
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds