metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-amino-4-methyl­pyridinium) bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato-κ2S,S′)nickelate(II)

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: powdtech@njut.edu.cn

(Received 18 June 2008; accepted 23 June 2008; online 28 June 2008)

The asymmetric unit of the title compound, (C6H9N2)2[Ni(C4N2S2)2], contains one half of an [Ni(mnt)2]2− anion (mnt is maleonitrile­dithiol­ate or 1,2-dicyano­ethene-1,2-dithiol­ate) and one 1-amino-4-methyl­pyridinium cation. The NiII atom is located on an inversion centre. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Cassoux et al. (1991[Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. E. (1991). Coord. Chem. Rev. 110, 115-160.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)2[Ni(C4N2S2)2]

  • Mr = 557.39

  • Triclinic, [P \overline 1]

  • a = 7.678 (5) Å

  • b = 9.095 (6) Å

  • c = 9.665 (6) Å

  • α = 93.116 (7)°

  • β = 104.519 (8)°

  • γ = 108.813 (7)°

  • V = 611.7 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.732, Tmax = 0.892

  • 3040 measured reflections

  • 2097 independent reflections

  • 1937 reflections with I > 2σ(I)

  • Rint = 0.137

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.173

  • S = 1.04

  • 2097 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1i 0.86 2.35 3.151 (6) 155
N4—H4B⋯N2 0.86 2.58 3.075 (5) 118
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT=; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Square-planar M[dithiolene]2 complexes have attracted extensive interests in the areas of conducting and magnetic materials, dyes, non-linear optics and catalysis (Cassoux et al., 1991). We report herein the crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig. 1) contains one-half [Ni(mnt)2]2- anion (where mnt is maleonitriledithiolate) and one 1-amino-4-methyl- pyridinium cation. The NiII atom is located at the inversion centre. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal structure, intra- and intermolecular N-H···N hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Cassoux et al. (1991). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed with water (20 ml) by stirring at room temperature. Subsequently, a solution of 1-amino-4-methylpyridinium iodide (590 mg, 2.5 mmol) in water (10 ml) was added to the mixture, and the red precipitate immediately formed was filtered off, and washed with water. The crude product was recrystallized in acetone (20 ml) to give red crystals. Crystals suitable for X-ray analysis were obtained by diffusing diethyl ether into the solution of (I) in acetone for 6 d. Anal. Calcd.: C, 43.10; H, 3.26; N, 20.10%. Found: C, 43.15; H, 3.29; N, 20.16%. FTIR data (KBr pellets, cm-1): 3025, 2928, 2920, 2199, 1577, 1490, 1399, 1125.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H= 0.93 and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme [symmetry code: (') -x, -y, -z].
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines [symmetry code: (') -x, -y, -z]. H atoms not involved in hydrogen bonding have been omitted for clarity.
Bis(1-amino-4-methylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S')nicklate(II) top
Crystal data top
(C6H9N2)2[Ni(C4N2S2)2]Z = 1
Mr = 557.39F(000) = 286
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.678 (5) ÅCell parameters from 2479 reflections
b = 9.095 (6) Åθ = 2.3–22.2°
c = 9.665 (6) ŵ = 1.16 mm1
α = 93.116 (7)°T = 296 K
β = 104.519 (8)°Block, red
γ = 108.813 (7)°0.30 × 0.20 × 0.10 mm
V = 611.7 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2097 independent reflections
Radiation source: sealed tube1937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.137
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 89
Tmin = 0.732, Tmax = 0.892k = 1010
3040 measured reflectionsl = 118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1404P)2]
where P = (Fo2 + 2Fc2)/3
2097 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.48 e Å3
Crystal data top
(C6H9N2)2[Ni(C4N2S2)2]γ = 108.813 (7)°
Mr = 557.39V = 611.7 (7) Å3
Triclinic, P1Z = 1
a = 7.678 (5) ÅMo Kα radiation
b = 9.095 (6) ŵ = 1.16 mm1
c = 9.665 (6) ÅT = 296 K
α = 93.116 (7)°0.30 × 0.20 × 0.10 mm
β = 104.519 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2097 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1937 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.892Rint = 0.137
3040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.04Δρmax = 0.82 e Å3
2097 reflectionsΔρmin = 1.48 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.00000.0326 (2)
S10.53316 (12)0.82630 (9)0.14377 (8)0.0430 (3)
S20.62570 (12)0.89841 (9)0.18019 (8)0.0441 (3)
N10.3775 (6)0.6494 (4)0.5237 (4)0.0726 (10)
N20.8189 (5)0.9732 (4)0.5790 (3)0.0570 (7)
N30.8790 (4)0.6656 (3)0.8401 (3)0.0463 (6)
N40.8879 (5)0.6838 (4)0.6984 (4)0.0633 (8)
H4A0.81690.60970.62820.076*
H4B0.96440.76920.68170.076*
C10.4152 (4)0.8525 (4)0.3142 (3)0.0390 (6)
C20.3924 (5)0.7418 (4)0.4332 (3)0.0476 (7)
C30.6515 (4)1.0259 (3)0.3304 (3)0.0373 (6)
C40.7452 (4)0.9981 (4)0.4683 (3)0.0433 (7)
C50.8723 (7)0.6146 (5)1.2737 (4)0.0694 (11)
H5A0.98820.60071.32680.104*
H5B0.76390.52451.27310.104*
H5C0.86150.70681.31870.104*
C60.8775 (5)0.6333 (4)1.1208 (4)0.0488 (7)
C70.7604 (5)0.5155 (4)1.0066 (4)0.0508 (7)
H70.68000.42231.02510.061*
C80.7615 (5)0.5345 (4)0.8667 (4)0.0511 (8)
H80.68020.45560.79090.061*
C90.9972 (5)0.7824 (4)0.9466 (4)0.0516 (8)
H91.07950.87260.92520.062*
C100.9965 (5)0.7687 (4)1.0869 (4)0.0564 (9)
H101.07640.85091.16010.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0304 (3)0.0274 (3)0.0316 (3)0.0051 (2)0.0022 (2)0.0029 (2)
S10.0501 (5)0.0389 (4)0.0369 (4)0.0191 (3)0.0041 (3)0.0026 (3)
S20.0558 (5)0.0376 (4)0.0348 (4)0.0194 (4)0.0031 (3)0.0010 (3)
N10.091 (3)0.058 (2)0.0556 (18)0.0214 (18)0.0098 (17)0.0172 (15)
N20.0604 (18)0.0588 (18)0.0416 (15)0.0165 (14)0.0021 (12)0.0067 (12)
N30.0428 (14)0.0357 (13)0.0576 (15)0.0130 (11)0.0119 (11)0.0003 (11)
N40.078 (2)0.0500 (17)0.0605 (18)0.0180 (16)0.0238 (16)0.0052 (13)
C10.0360 (14)0.0370 (15)0.0354 (14)0.0068 (11)0.0052 (11)0.0055 (11)
C20.0506 (18)0.0385 (16)0.0421 (16)0.0100 (13)0.0029 (13)0.0063 (12)
C30.0334 (14)0.0344 (14)0.0342 (13)0.0058 (11)0.0020 (10)0.0028 (10)
C40.0400 (16)0.0402 (15)0.0404 (15)0.0073 (12)0.0051 (12)0.0007 (12)
C50.075 (3)0.064 (3)0.063 (2)0.027 (2)0.0076 (19)0.0050 (18)
C60.0418 (17)0.0439 (16)0.0552 (18)0.0176 (13)0.0028 (13)0.0011 (13)
C70.0487 (18)0.0321 (15)0.0605 (19)0.0042 (13)0.0111 (14)0.0011 (13)
C80.0461 (18)0.0336 (15)0.0620 (19)0.0060 (13)0.0085 (14)0.0080 (13)
C90.0404 (17)0.0317 (15)0.071 (2)0.0030 (12)0.0104 (15)0.0006 (14)
C100.0464 (18)0.0393 (17)0.063 (2)0.0053 (14)0.0033 (15)0.0110 (14)
Geometric parameters (Å, º) top
Ni1—S12.1655 (12)C5—H5C0.9600
Ni1—S1i2.1655 (12)C6—C101.388 (5)
Ni1—S22.1738 (11)C6—C71.388 (5)
Ni1—S2i2.1738 (11)C7—C81.375 (5)
S1—C11.739 (3)C7—H70.9300
S2—C31.737 (3)C8—N31.326 (4)
C1—C3i1.361 (4)C8—H80.9300
C1—C21.423 (4)C9—N31.343 (4)
C2—N11.137 (5)C9—C101.369 (5)
C3—C1i1.361 (4)C9—H90.9300
C3—C41.426 (4)C10—H100.9300
C4—N21.149 (4)N3—N41.404 (4)
C5—C61.506 (5)N4—H4A0.8600
C5—H5A0.9600N4—H4B0.8600
C5—H5B0.9600
S1—Ni1—S1i180.00 (3)C10—C6—C7117.0 (3)
S1—Ni1—S288.08 (5)C10—C6—C5122.0 (3)
S1i—Ni1—S291.92 (5)C7—C6—C5121.0 (4)
S1—Ni1—S2i91.92 (5)C8—C7—C6120.9 (3)
S1i—Ni1—S2i88.08 (5)C8—C7—H7119.5
S2—Ni1—S2i180.0C6—C7—H7119.5
C1—S1—Ni1103.30 (12)N3—C8—C7119.8 (3)
C3—S2—Ni1103.34 (12)N3—C8—H8120.1
C3i—C1—C2122.5 (3)C7—C8—H8120.1
C3i—C1—S1120.5 (2)N3—C9—C10120.0 (3)
C2—C1—S1117.0 (3)N3—C9—H9120.0
N1—C2—C1176.8 (4)C10—C9—H9120.0
C1i—C3—C4122.4 (3)C9—C10—C6120.6 (3)
C1i—C3—S2120.3 (2)C9—C10—H10119.7
C4—C3—S2117.4 (2)C6—C10—H10119.7
N2—C4—C3178.9 (4)C8—N3—C9121.7 (3)
C6—C5—H5A109.5C8—N3—N4120.4 (3)
C6—C5—H5B109.5C9—N3—N4117.8 (3)
H5A—C5—H5B109.5N3—N4—H4A120.0
C6—C5—H5C109.5N3—N4—H4B120.0
H5A—C5—H5C109.5H4A—N4—H4B120.0
H5B—C5—H5C109.5
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1ii0.862.353.151 (6)155
N4—H4B···N20.862.583.075 (5)118
Symmetry code: (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C6H9N2)2[Ni(C4N2S2)2]
Mr557.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.678 (5), 9.095 (6), 9.665 (6)
α, β, γ (°)93.116 (7), 104.519 (8), 108.813 (7)
V3)611.7 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.732, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
3040, 2097, 1937
Rint0.137
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.173, 1.04
No. of reflections2097
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N1i0.862.353.151 (6)155.2
N4—H4B···N20.862.583.075 (5)117.7
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the Science and Technology Department of Jiangsu Province, People's Republic of China, and the Natural Science Foundation of China for financial support (grant No. 10774076).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. E. (1991). Coord. Chem. Rev. 110, 115–160.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds