organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

12-Nitro­methyl-14-de­oxy­andro­graph­olide

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: cj1908@126.com

(Received 19 June 2008; accepted 20 June 2008; online 28 June 2008)

In the mol­ecule of the title compound {systematic name: 3-[2-(6-hydr­oxy-5-hydroxy­methyl-5,8a-dimethyl-2-methyl­ene­per­hydro-1-napth­yl)-1-(nitro­meth­yl)eth­yl]-2(4H)-furan­one}, C21H31NO6, the cyclo­hexane rings have chair conformations. Intra­molecular O—H⋯O hydrogen bonding results in the formation of a six-membered non-planar ring with a twist conformation. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the c axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H31NO6

  • Mr = 393.47

  • Orthorhombic, P 21 21 21

  • a = 11.503 (2) Å

  • b = 13.151 (3) Å

  • c = 13.434 (3) Å

  • V = 2032.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 294 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.964, Tmax = 0.982

  • 3993 measured reflections

  • 3643 independent reflections

  • 2711 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.188

  • S = 0.98

  • 3643 reflections

  • 256 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.82 2.08 2.751 (5) 139
O2—H2A⋯O3i 0.85 (4) 2.11 (4) 2.906 (5) 156 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Some derivatives of andrographolide are important chemical materials. We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (C5/C6/C8-C11) adopt chair [ϕ = -86.32 (2)° and θ = 4.69 (3)° (for ring A) and ϕ = -148.49 (3)° and θ = 86.21 (3)° (for ring B)] conformations, having total puckering amplitudes, QT, of 0.606 (3) Å and 0.642 (3) Å, respectively (Cremer & Pople, 1975). Ring C (O4/C18-C21) is, of course, planar. The intramolecular O-H···O hydrogen bond (Table 1) results in the formation of a six-membered non-planar ring: D (O1/H1A/O2/C8/C9/C13), in which it adopts twisted conformation, having total puckering amplitude, QT, of 1.200 (3) Å (Cremer & Pople, 1975).

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the c axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond-length data, see: Allen et al. (1987). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, andrographolide (10 g) was dissolved in methanol (40 ml), and then nitromethane (16 ml), methanol (32 ml) and sodium methoxide (4.2 g) were added by stirring at room temperature. The reaction mixture was poured into ice salt water (120 ml). After the reaction finished, it was extracted with ethyl acetate, washed with saturated salt water and dryed with sodium sulfate. The product was filtrated and the organic layer was concentrated. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H2A atom was located in difference map and refined [O2-H2A = 0.843 (10) Å; Uiso(H) = 0.080 Å2]. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H= 0.93 and 0.98 Å (for aromatic and methine H), 0.93 and 0.97 Å (for methylene H) and 0.96 Å (for methyl H), and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH and methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-[2-(6-hydroxy-5-hydroxymethyl-5,8a-dimethyl-2-methyleneperhydro- 1-napthyl)-1-(nitromethyl)ethyl]-2(4H)-furanone top
Crystal data top
C21H31NO6F(000) = 848
Mr = 393.47Dx = 1.289 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 11.503 (2) Åθ = 10–13°
b = 13.151 (3) ŵ = 0.09 mm1
c = 13.434 (3) ÅT = 294 K
V = 2032.2 (7) Å3Block, colorless
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2711 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.2°, θmin = 2.2°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.964, Tmax = 0.982l = 1616
3993 measured reflections3 standard reflections every 120 min
3643 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.1P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
3643 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C21H31NO6V = 2032.2 (7) Å3
Mr = 393.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.503 (2) ŵ = 0.09 mm1
b = 13.151 (3) ÅT = 294 K
c = 13.434 (3) Å0.40 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2711 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.964, Tmax = 0.9823 standard reflections every 120 min
3993 measured reflections intensity decay: 1%
3643 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.188H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.19 e Å3
3643 reflectionsΔρmin = 0.20 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3022 (3)0.2945 (3)0.3635 (3)0.0757 (11)
H1A0.32100.28680.42190.114*
O20.4711 (3)0.2805 (3)0.5078 (2)0.0664 (9)
H2A0.477 (5)0.325 (3)0.553 (3)0.080*
O30.9911 (4)0.6195 (2)0.1980 (3)0.0767 (11)
O41.0518 (4)0.5831 (2)0.3513 (2)0.0705 (10)
O51.2868 (3)0.3264 (4)0.0613 (3)0.0923 (14)
O61.2176 (3)0.4675 (3)0.1109 (3)0.0743 (11)
N1.2092 (3)0.3771 (4)0.0954 (3)0.0557 (10)
C10.7547 (4)0.4347 (4)0.0088 (3)0.0629 (13)
H1B0.71620.47130.04040.075*
H1C0.80970.38610.00880.075*
C20.7313 (4)0.4515 (3)0.1031 (3)0.0448 (10)
C30.6437 (4)0.5286 (3)0.1353 (4)0.0522 (11)
H3A0.61290.56360.07750.063*
H3B0.68060.57860.17800.063*
C40.5440 (4)0.4763 (3)0.1922 (3)0.0488 (11)
H4A0.49090.52740.21750.059*
H4B0.50110.43260.14700.059*
C50.5913 (3)0.4130 (3)0.2788 (3)0.0344 (8)
H5A0.63780.46150.31720.041*
C60.6812 (3)0.3322 (3)0.2437 (3)0.0331 (8)
C70.7821 (3)0.3923 (3)0.1901 (3)0.0359 (8)
H7A0.80880.44330.23800.043*
C80.4951 (3)0.3781 (3)0.3532 (3)0.0407 (9)
C90.5559 (4)0.3237 (4)0.4396 (3)0.0500 (10)
H9A0.60210.37400.47610.060*
C100.6359 (4)0.2395 (3)0.4063 (3)0.0496 (11)
H10A0.59080.18760.37250.059*
H10B0.67170.20850.46420.059*
C110.7308 (3)0.2784 (3)0.3364 (3)0.0445 (10)
H11A0.77860.22160.31530.053*
H11B0.78020.32550.37240.053*
C120.4332 (5)0.4722 (4)0.3948 (4)0.0646 (13)
H12A0.37360.45130.44050.097*
H12B0.39880.50980.34110.097*
H12C0.48840.51440.42890.097*
C130.4032 (3)0.3085 (4)0.3047 (4)0.0519 (11)
H13A0.38060.33750.24120.062*
H13B0.43800.24270.29170.062*
C140.6321 (4)0.2524 (3)0.1714 (3)0.0465 (10)
H14A0.57020.21570.20320.070*
H14B0.69250.20580.15270.070*
H14C0.60270.28570.11300.070*
C150.8890 (3)0.3280 (3)0.1645 (3)0.0422 (9)
H15A0.87420.29140.10310.051*
H15B0.90110.27830.21670.051*
C161.0006 (3)0.3920 (3)0.1522 (3)0.0392 (9)
H16A0.98760.44250.09980.047*
C171.0987 (4)0.3222 (4)0.1201 (4)0.0555 (12)
H17A1.11410.27390.17310.067*
H17B1.07380.28390.06210.067*
C181.0289 (3)0.4467 (3)0.2473 (3)0.0400 (9)
C191.0200 (4)0.5570 (4)0.2574 (3)0.0534 (11)
C201.0817 (5)0.4937 (4)0.4047 (4)0.0668 (13)
H20A1.03200.48550.46250.080*
H20B1.16200.49650.42680.080*
C211.0646 (4)0.4099 (4)0.3342 (3)0.0523 (11)
H21A1.07690.34150.34810.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0430 (18)0.083 (2)0.101 (3)0.0086 (17)0.0210 (19)0.002 (2)
O20.069 (2)0.081 (2)0.0489 (18)0.007 (2)0.0189 (17)0.0045 (16)
O30.112 (3)0.0437 (17)0.075 (2)0.001 (2)0.020 (2)0.0099 (17)
O40.094 (3)0.061 (2)0.0572 (19)0.0127 (19)0.0167 (19)0.0096 (17)
O50.055 (2)0.131 (4)0.091 (3)0.000 (2)0.018 (2)0.038 (3)
O60.050 (2)0.078 (3)0.095 (3)0.0172 (18)0.0090 (19)0.015 (2)
N0.038 (2)0.089 (3)0.0404 (19)0.000 (2)0.0067 (16)0.003 (2)
C10.054 (3)0.080 (3)0.055 (3)0.012 (3)0.001 (2)0.014 (3)
C20.041 (2)0.047 (2)0.047 (2)0.0133 (19)0.0018 (18)0.0099 (19)
C30.052 (3)0.044 (2)0.061 (3)0.002 (2)0.005 (2)0.015 (2)
C40.044 (2)0.048 (2)0.055 (3)0.0084 (19)0.001 (2)0.016 (2)
C50.0328 (19)0.0331 (19)0.0373 (19)0.0008 (15)0.0054 (15)0.0029 (15)
C60.0341 (19)0.0299 (18)0.0353 (19)0.0043 (16)0.0006 (16)0.0001 (16)
C70.0347 (19)0.0321 (18)0.041 (2)0.0026 (17)0.0040 (17)0.0023 (16)
C80.037 (2)0.0405 (19)0.045 (2)0.0007 (18)0.0087 (18)0.0034 (17)
C90.054 (2)0.058 (3)0.038 (2)0.012 (2)0.0076 (19)0.0002 (19)
C100.051 (3)0.056 (2)0.042 (2)0.004 (2)0.004 (2)0.018 (2)
C110.041 (2)0.043 (2)0.049 (2)0.0014 (18)0.0008 (19)0.0079 (18)
C120.064 (3)0.058 (3)0.072 (3)0.006 (2)0.017 (3)0.006 (2)
C130.036 (2)0.056 (3)0.064 (3)0.003 (2)0.004 (2)0.008 (2)
C140.051 (2)0.039 (2)0.049 (2)0.0112 (19)0.007 (2)0.0069 (19)
C150.040 (2)0.0364 (19)0.050 (2)0.0072 (17)0.0065 (18)0.0022 (17)
C160.038 (2)0.0405 (19)0.039 (2)0.0032 (18)0.0041 (17)0.0026 (17)
C170.041 (2)0.065 (3)0.061 (3)0.005 (2)0.011 (2)0.009 (2)
C180.033 (2)0.044 (2)0.043 (2)0.0048 (17)0.0007 (18)0.0054 (18)
C190.058 (3)0.049 (2)0.053 (2)0.008 (2)0.005 (2)0.001 (2)
C200.065 (3)0.087 (4)0.048 (3)0.009 (3)0.007 (2)0.004 (3)
C210.048 (2)0.058 (3)0.050 (2)0.001 (2)0.004 (2)0.011 (2)
Geometric parameters (Å, º) top
O1—C131.417 (5)C8—C131.542 (6)
O1—H1A0.8200C9—C101.509 (6)
O2—C91.453 (5)C9—H9A0.9800
O2—H2A0.85 (4)C10—C111.528 (6)
O3—C191.194 (5)C10—H10A0.9700
C3—C41.540 (6)C10—H10B0.9700
C3—H3A0.9700C11—H11A0.9700
C3—H3B0.9700C11—H11B0.9700
O4—C191.358 (5)C12—H12A0.9600
O4—C201.420 (6)C12—H12B0.9600
N—O51.205 (5)C12—H12C0.9600
N—O61.211 (5)C13—H13A0.9700
N—C171.499 (6)C13—H13B0.9700
C1—C21.314 (6)C14—H14A0.9600
C1—H1B0.9300C14—H14B0.9600
C1—H1C0.9300C14—H14C0.9600
C2—C31.494 (6)C15—C161.544 (5)
C2—C71.521 (6)C15—H15A0.9700
C4—C51.530 (5)C15—H15B0.9700
C4—H4A0.9700C16—C181.502 (6)
C4—H4B0.9700C16—C171.517 (6)
C5—C61.556 (5)C16—H16A0.9800
C5—C81.561 (5)C17—H17A0.9700
C5—H5A0.9800C17—H17B0.9700
C6—C141.538 (5)C18—C211.329 (6)
C6—C111.542 (5)C18—C191.460 (6)
C6—C71.578 (5)C20—C211.467 (7)
C7—C151.531 (5)C20—H20A0.9700
C7—H7A0.9800C20—H20B0.9700
C8—C91.532 (6)C21—H21A0.9300
C8—C121.533 (6)
C13—O1—H1A109.5H10A—C10—H10B107.9
O5—N—O6123.3 (4)C10—C11—C6112.7 (3)
O5—N—C17116.5 (4)C10—C11—H11A109.1
O6—N—C17120.2 (4)C6—C11—H11A109.1
C2—C1—H1B120.0C10—C11—H11B109.1
C2—C1—H1C120.0C6—C11—H11B109.1
H1B—C1—H1C120.0H11A—C11—H11B107.8
C1—C2—C3122.1 (4)C8—C12—H12A109.5
C1—C2—C7125.2 (4)C8—C12—H12B109.5
C3—C2—C7112.6 (3)H12A—C12—H12B109.5
C9—O2—H2A97 (4)C8—C12—H12C109.5
C2—C3—C4110.1 (3)H12A—C12—H12C109.5
C2—C3—H3A109.6H12B—C12—H12C109.5
C4—C3—H3A109.6O1—C13—C8113.8 (4)
C2—C3—H3B109.6O1—C13—H13A108.8
C4—C3—H3B109.7C8—C13—H13A108.8
H3A—C3—H3B108.2O1—C13—H13B108.8
C19—O4—C20109.0 (4)C8—C13—H13B108.8
C5—C4—C3110.8 (3)H13A—C13—H13B107.7
C5—C4—H4A109.5C6—C14—H14A109.5
C3—C4—H4A109.5C6—C14—H14B109.5
C5—C4—H4B109.5H14A—C14—H14B109.5
C3—C4—H4B109.5C6—C14—H14C109.5
H4A—C4—H4B108.1H14A—C14—H14C109.5
C4—C5—C6112.2 (3)H14B—C14—H14C109.5
C4—C5—C8113.3 (3)C7—C15—C16113.1 (3)
C6—C5—C8117.7 (3)C7—C15—H15A109.0
C4—C5—H5A103.9C16—C15—H15A109.0
C6—C5—H5A103.9C7—C15—H15B109.0
C8—C5—H5A103.9C16—C15—H15B109.0
C14—C6—C11109.5 (3)H15A—C15—H15B107.8
C14—C6—C5114.4 (3)C18—C16—C17111.8 (4)
C11—C6—C5108.3 (3)C18—C16—C15110.6 (3)
C14—C6—C7108.9 (3)C17—C16—C15108.6 (3)
C11—C6—C7109.0 (3)C18—C16—H16A108.6
C5—C6—C7106.6 (3)C17—C16—H16A108.6
C2—C7—C15114.7 (3)C15—C16—H16A108.6
C2—C7—C6108.9 (3)N—C17—C16113.7 (4)
C15—C7—C6114.7 (3)N—C17—H17A108.8
C2—C7—H7A105.9C16—C17—H17A108.8
C15—C7—H7A105.9N—C17—H17B108.8
C6—C7—H7A105.9C16—C17—H17B108.8
C9—C8—C12108.2 (4)H17A—C17—H17B107.7
C9—C8—C13110.9 (3)C21—C18—C19107.6 (4)
C12—C8—C13108.3 (4)C21—C18—C16129.7 (4)
C9—C8—C5107.4 (3)C19—C18—C16122.7 (4)
C12—C8—C5109.0 (3)O3—C19—O4121.5 (4)
C13—C8—C5112.9 (3)O3—C19—C18129.9 (4)
O2—C9—C10108.0 (4)O4—C19—C18108.6 (4)
O2—C9—C8110.7 (4)O4—C20—C21105.2 (4)
C10—C9—C8113.3 (3)O4—C20—H20A110.7
O2—C9—H9A108.2C21—C20—H20A110.7
C10—C9—H9A108.2O4—C20—H20B110.7
C8—C9—H9A108.2C21—C20—H20B110.7
C9—C10—C11111.9 (3)H20A—C20—H20B108.8
C9—C10—H10A109.2C18—C21—C20109.6 (4)
C11—C10—H10A109.2C18—C21—H21A125.2
C9—C10—H10B109.2C20—C21—H21A125.2
C11—C10—H10B109.2
C1—C2—C3—C4117.9 (5)C5—C8—C9—C1053.2 (4)
C7—C2—C3—C458.4 (5)O2—C9—C10—C11178.3 (3)
C2—C3—C4—C554.5 (5)C8—C9—C10—C1158.7 (5)
C3—C4—C5—C656.8 (4)C9—C10—C11—C657.0 (5)
C3—C4—C5—C8167.0 (3)C14—C6—C11—C1074.5 (4)
C4—C5—C6—C1462.0 (4)C5—C6—C11—C1050.8 (4)
C8—C5—C6—C1472.1 (4)C7—C6—C11—C10166.4 (3)
C4—C5—C6—C11175.6 (3)C9—C8—C13—O172.8 (4)
C8—C5—C6—C1150.3 (4)C12—C8—C13—O145.8 (5)
C4—C5—C6—C758.4 (4)C5—C8—C13—O1166.6 (4)
C8—C5—C6—C7167.5 (3)C2—C7—C15—C1675.8 (4)
C1—C2—C7—C1515.6 (6)C6—C7—C15—C16157.0 (3)
C3—C2—C7—C15168.2 (3)C7—C15—C16—C1860.9 (4)
C1—C2—C7—C6114.4 (5)C7—C15—C16—C17176.2 (4)
C3—C2—C7—C661.8 (4)O5—N—C17—C16173.8 (4)
C14—C6—C7—C264.7 (4)O6—N—C17—C166.9 (6)
C11—C6—C7—C2175.9 (3)C18—C16—C17—N63.8 (5)
C5—C6—C7—C259.2 (4)C15—C16—C17—N174.0 (4)
C14—C6—C7—C1565.3 (4)C17—C16—C18—C2152.3 (6)
C11—C6—C7—C1554.1 (4)C15—C16—C18—C2168.9 (5)
C5—C6—C7—C15170.8 (3)C17—C16—C18—C19127.8 (4)
C4—C5—C8—C9175.4 (3)C15—C16—C18—C19111.0 (4)
C6—C5—C8—C951.0 (4)C20—O4—C19—O3179.9 (5)
C4—C5—C8—C1258.4 (5)C20—O4—C19—C180.1 (5)
C6—C5—C8—C12168.0 (4)C21—C18—C19—O3179.8 (5)
C4—C5—C8—C1362.1 (4)C16—C18—C19—O30.1 (8)
C6—C5—C8—C1371.5 (4)C21—C18—C19—O40.4 (5)
C12—C8—C9—O267.8 (4)C16—C18—C19—O4179.7 (3)
C13—C8—C9—O250.9 (4)C19—O4—C20—C210.2 (5)
C5—C8—C9—O2174.7 (3)C19—C18—C21—C200.5 (5)
C12—C8—C9—C10170.7 (4)C16—C18—C21—C20179.6 (4)
C13—C8—C9—C1070.6 (4)O4—C20—C21—C180.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.082.751 (5)139
O2—H2A···O3i0.85 (4)2.11 (4)2.906 (5)156 (4)
Symmetry code: (i) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H31NO6
Mr393.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)11.503 (2), 13.151 (3), 13.434 (3)
V3)2032.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.964, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3993, 3643, 2711
Rint0.032
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.188, 0.98
No. of reflections3643
No. of parameters256
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.822.082.751 (5)139.00
O2—H2A···O3i0.85 (4)2.11 (4)2.906 (5)156 (4)
Symmetry code: (i) x+3/2, y+1, z+1/2.
 

Acknowledgements

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds