metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m963-m964

Dieth­yl[N-(3-meth­­oxy-2-oxido­benzyl­­idene)-N′-(oxido­methyl­ene)hydrazine-κ3O,N,O′]tin(IV)

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bUniversity of Sargodha, Department of Physics, Sagrodha, Pakistan, and cChemistry Division, Pakistan Institute of Nuclear Science and Technology, PO Nilore, Islamabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 20 June 2008; accepted 23 June 2008; online 28 June 2008)

In the mol­ecule of the title compound, [Sn(C2H5)2(C9H8N2O3)], the Sn atom is five-coordinated in a distorted trigonal-bipyramidal configuration by two O and one N atoms of the tridentate Schiff base ligand in the equatorial plane, and by two C atoms of ethyl groups in the axial positions. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For related literature, see: Chen et al. (2006[Chen, S.-W., Yin, H.-D. & Wang, D.-Q. (2006). Acta Cryst. E62, m1654-m1655.]); Shuja et al. (2007a[Shuja, S., Ali, S., Khalid, N., Broker, G. A. & Tiekink, E. R. T. (2007a). Acta Cryst. E63, m1025-m1026.],b[Shuja, S., Ali, S., Meetsma, A., Broker, G. A. & Tiekink, E. R. T. (2007b). Acta Cryst. E63, m1130-m1132.],c[Shuja, S., Ali, S., Khalid, N. & Parvez, M. (2007c). Acta Cryst. E63, o879-o880.]); Shuja et al. (2008[Shuja, S., Ali, S., Tahir, M. N., Khalid, N. & Khan, I. U. (2008). Acta Cryst. E64, m531-m532.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C2H5)2(C9H8N2O3)]

  • Mr = 368.98

  • Triclinic, [P \overline 1]

  • a = 8.2485 (3) Å

  • b = 9.8609 (4) Å

  • c = 10.4501 (4) Å

  • α = 63.521 (2)°

  • β = 68.967 (1)°

  • γ = 77.803 (2)°

  • V = 708.79 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.650, Tmax = 0.720

  • 14275 measured reflections

  • 3603 independent reflections

  • 3458 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.063

  • S = 1.02

  • 3603 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C11 2.1216 (19)
Sn1—C9 2.1217 (18)
Sn1—O1 2.1888 (13)
Sn1—O2 2.2162 (14)
Sn1—N1 2.2271 (15)
C11—Sn1—C9 153.45 (9)
C11—Sn1—O1 97.19 (7)
C9—Sn1—O1 93.40 (7)
C11—Sn1—O2 92.71 (8)
C9—Sn1—O2 88.78 (7)
O1—Sn1—O2 152.79 (5)
C11—Sn1—N1 99.42 (7)
C9—Sn1—N1 106.13 (7)
O1—Sn1—N1 82.07 (5)
O2—Sn1—N1 71.30 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O2i 0.96 2.34 3.068 (4) 132
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In continuation of our efforts to synthesize various Schiff base ligands of substituted salicylaldehydes with hydrazides, aminoacids and their organotin derivatives (Shuja et al., 2007a,b,c; Shuja et al., 2008), we report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the Sn atom is five-coordinated in distorted trigonal bipyramidal configuration (Table 1) by two O and one N atoms of the tridentate Schiff base ligand in the equatorial plane, and two C atoms of diethyl groups in the axial positions. The bond lengths and angles are within normal ranges, which are comparable with the corresponding values in (3-methoxy-2-oxidobenzaldehyde benzoylhydrazonato)dimethyltin(IV), (II) (Chen et al., 2006) and (2,2'-bipyridine-κ2N,N'){[(3-methoxy-2-oxidobenzylidene -κO2)hydrazono]methanolato-κ2N2,O}dimethyltin(IV), (III) (Shuja et al., 2008). The Sn1-C9 [2.1217 (18) Å] and Sn1-C11 [2.1219 (19) Å] bonds in (I) are reported as 2.099 (4) and 2.102 (4) Å in (II) and 2.097 (3) and 2.098 (3) Å in (III). On the other hand, the Sn1-O1 [2.1888 (13) Å] and Sn1-O2 [2.2162 (14) Å] bonds in (I) are reported as 2.131 (3) and 2.178 (3) Å in (II) and 2.1572 (14) and 2.2658 (15) Å in (III), while the Sn1-N1 [2.2271 (15) Å] bond in (I) is reported as 2.188 (3) Å in (II) and 2.2980 (18) Å in (III).

Rings A (Sn1/O2/N1/N2/C8) and C (C1-C6) are, of course, planar, and the dihedral angle between them is A/C = 7.96 (3)°. Ring B (Sn1/O1/N1/C1/C6/C7) adopts flattened-boat [ϕ = -57.24 (2)° and θ = 107.39 (3)°] conformation, having total puckering amplitude, QT, of 0.453 (3) Å (Cremer & Pople, 1975).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Chen et al. (2006); Shuja et al. (2007a,b,c); Shuja et al. (2008). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, N-(3-methoxy-2-hydroxybenzylidene)- formichydrazide (0.58 g, 3.0 mmol) and Et3N (0.84 ml, 6 mmol) were added to dry toluene (100 ml) in a 250 ml round bottom flask equipped with a reflux condenser. Diethyltin(IV) dichloride (0.74 g, 3.0 mmol) dissolved in dry toluene (20 ml) was then added. The reaction mixture was stirred at room temperature for 5 h and allowed to stand overnight. The formed Et3N-HCl was filtered off and the clear yellow solution was evaporated on a rotary evaporator under reduced pressure. Crystals of (I) were obtained by recrystallization from a chloroform solution.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Diethyl[N-(3-methoxy-2-oxidobenzylidene)-N'- (oxidomethylene)hydrazine-κ3O,N,O']tin(IV) top
Crystal data top
[Sn(C2H5)2(C9H8N2O3)]Z = 2
Mr = 368.98F(000) = 368
Triclinic, P1Dx = 1.729 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2485 (3) ÅCell parameters from 3603 reflections
b = 9.8609 (4) Åθ = 2.3–28.7°
c = 10.4501 (4) ŵ = 1.81 mm1
α = 63.521 (2)°T = 296 K
β = 68.967 (1)°Prismatic, yellow
γ = 77.803 (2)°0.30 × 0.20 × 0.18 mm
V = 708.79 (5) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3603 independent reflections
Radiation source: fine-focus sealed tube3458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.4 pixels mm-1θmax = 28.7°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.650, Tmax = 0.720l = 1414
14275 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.0901P]
where P = (Fo2 + 2Fc2)/3
3603 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Sn(C2H5)2(C9H8N2O3)]γ = 77.803 (2)°
Mr = 368.98V = 708.79 (5) Å3
Triclinic, P1Z = 2
a = 8.2485 (3) ÅMo Kα radiation
b = 9.8609 (4) ŵ = 1.81 mm1
c = 10.4501 (4) ÅT = 296 K
α = 63.521 (2)°0.30 × 0.20 × 0.18 mm
β = 68.967 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3603 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3458 reflections with I > 2σ(I)
Tmin = 0.650, Tmax = 0.720Rint = 0.023
14275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
3603 reflectionsΔρmin = 0.59 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.134568 (12)0.080659 (11)0.280902 (10)0.02876 (6)
O10.07311 (18)0.14980 (15)0.46603 (15)0.0333 (3)
O20.2427 (2)0.11910 (19)0.04108 (16)0.0510 (4)
O30.04789 (19)0.17238 (16)0.73028 (15)0.0400 (3)
N10.2910 (2)0.28451 (17)0.15785 (16)0.0343 (3)
N20.3750 (3)0.3247 (2)0.0026 (2)0.0446 (4)
C10.1382 (2)0.25342 (18)0.47969 (19)0.0276 (3)
C20.0784 (2)0.26822 (19)0.6190 (2)0.0303 (3)
C30.1440 (3)0.3722 (2)0.6396 (2)0.0396 (4)
H30.10240.37900.73200.048*
C40.2714 (3)0.4670 (3)0.5238 (3)0.0478 (5)
H40.31660.53540.53920.057*
C50.3298 (3)0.4587 (2)0.3872 (3)0.0447 (4)
H50.41440.52250.30950.054*
C60.2634 (2)0.3545 (2)0.3624 (2)0.0334 (3)
C70.3300 (3)0.3656 (2)0.2102 (2)0.0365 (4)
H70.40950.43900.14270.044*
C80.3378 (3)0.2327 (3)0.0403 (2)0.0443 (4)
H80.38570.25170.14160.053*
C90.1144 (2)0.1569 (2)0.2494 (2)0.0394 (4)
H9A0.13010.11490.18690.047*
H9B0.20290.11880.34600.047*
C100.1400 (4)0.3268 (3)0.1781 (5)0.0777 (9)
H10A0.25450.35440.16680.116*
H10B0.05470.36530.08130.116*
H10C0.12740.36920.24050.116*
C110.3323 (3)0.0893 (2)0.3408 (2)0.0413 (4)
H11A0.28800.15640.44570.050*
H11B0.35800.14910.28240.050*
C120.4986 (3)0.0295 (3)0.3172 (4)0.0713 (8)
H12A0.58100.11290.34680.107*
H12B0.47550.02760.37670.107*
H12C0.54560.03500.21320.107*
C130.1177 (4)0.1920 (3)0.8682 (2)0.0545 (6)
H13A0.20390.11970.93740.082*
H13B0.17020.29300.84930.082*
H13C0.02590.17640.91030.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02673 (8)0.03389 (8)0.02623 (8)0.00313 (5)0.00603 (5)0.01366 (6)
O10.0369 (7)0.0368 (6)0.0307 (6)0.0122 (5)0.0037 (5)0.0182 (5)
O20.0609 (10)0.0622 (10)0.0326 (7)0.0265 (8)0.0021 (6)0.0241 (7)
O30.0483 (8)0.0442 (7)0.0324 (6)0.0180 (6)0.0017 (6)0.0213 (6)
N10.0332 (7)0.0351 (7)0.0284 (7)0.0083 (6)0.0023 (6)0.0103 (6)
N20.0493 (10)0.0467 (9)0.0286 (8)0.0174 (8)0.0030 (7)0.0126 (7)
C10.0275 (7)0.0272 (7)0.0323 (7)0.0016 (6)0.0111 (6)0.0139 (6)
C20.0313 (8)0.0292 (8)0.0339 (8)0.0025 (6)0.0118 (7)0.0140 (7)
C30.0465 (10)0.0410 (9)0.0420 (9)0.0065 (8)0.0148 (8)0.0233 (8)
C40.0537 (12)0.0470 (11)0.0559 (12)0.0178 (9)0.0141 (10)0.0276 (10)
C50.0468 (11)0.0409 (10)0.0481 (11)0.0190 (8)0.0081 (9)0.0172 (9)
C60.0321 (8)0.0319 (8)0.0376 (8)0.0059 (6)0.0095 (7)0.0143 (7)
C70.0354 (9)0.0332 (8)0.0356 (9)0.0105 (7)0.0023 (7)0.0123 (7)
C80.0459 (10)0.0511 (11)0.0283 (8)0.0121 (9)0.0007 (7)0.0149 (8)
C90.0319 (8)0.0483 (10)0.0361 (9)0.0043 (7)0.0132 (7)0.0124 (8)
C100.0660 (17)0.0505 (14)0.112 (3)0.0168 (13)0.0459 (18)0.0229 (16)
C110.0344 (9)0.0382 (9)0.0488 (10)0.0038 (7)0.0101 (8)0.0200 (8)
C120.0440 (13)0.0669 (16)0.118 (3)0.0075 (11)0.0433 (15)0.0406 (17)
C130.0744 (16)0.0556 (12)0.0370 (10)0.0203 (11)0.0005 (10)0.0274 (10)
Geometric parameters (Å, º) top
Sn1—C112.1216 (19)C5—H50.9300
Sn1—C92.1217 (18)C6—C71.444 (3)
Sn1—O12.1888 (13)C7—H70.9300
Sn1—O22.2162 (14)C8—H80.9300
Sn1—N12.2271 (15)C9—C101.502 (3)
O1—C11.3304 (19)C9—H9A0.9700
O2—C81.278 (3)C9—H9B0.9700
O3—C21.377 (2)C10—H10A0.9600
O3—C131.433 (2)C10—H10B0.9600
N1—C71.291 (2)C10—H10C0.9600
N1—N21.416 (2)C11—C121.504 (3)
N2—C81.304 (3)C11—H11A0.9700
C1—C61.414 (2)C11—H11B0.9700
C1—C21.424 (2)C12—H12A0.9600
C2—C31.380 (2)C12—H12B0.9600
C3—C41.392 (3)C12—H12C0.9600
C3—H30.9300C13—H13A0.9600
C4—C51.368 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.414 (2)
C11—Sn1—C9153.45 (9)N1—C7—H7116.5
C11—Sn1—O197.19 (7)C6—C7—H7116.5
C9—Sn1—O193.40 (7)O2—C8—N2127.32 (18)
C11—Sn1—O292.71 (8)O2—C8—H8116.3
C9—Sn1—O288.78 (7)N2—C8—H8116.3
O1—Sn1—O2152.79 (5)C10—C9—Sn1113.26 (16)
C11—Sn1—N199.42 (7)C10—C9—H9A108.9
C9—Sn1—N1106.13 (7)Sn1—C9—H9A108.9
O1—Sn1—N182.07 (5)C10—C9—H9B108.9
O2—Sn1—N171.30 (6)Sn1—C9—H9B108.9
C1—O1—Sn1131.78 (11)H9A—C9—H9B107.7
C8—O2—Sn1114.11 (13)C9—C10—H10A109.5
C2—O3—C13116.47 (15)C9—C10—H10B109.5
C7—N1—N2113.77 (15)H10A—C10—H10B109.5
C7—N1—Sn1129.00 (12)C9—C10—H10C109.5
N2—N1—Sn1116.91 (12)H10A—C10—H10C109.5
C8—N2—N1110.32 (16)H10B—C10—H10C109.5
O1—C1—C6124.13 (15)C12—C11—Sn1114.55 (16)
O1—C1—C2119.40 (15)C12—C11—H11A108.6
C6—C1—C2116.45 (15)Sn1—C11—H11A108.6
O3—C2—C3122.78 (16)C12—C11—H11B108.6
O3—C2—C1115.59 (14)Sn1—C11—H11B108.6
C3—C2—C1121.62 (17)H11A—C11—H11B107.6
C2—C3—C4120.80 (18)C11—C12—H12A109.5
C2—C3—H3119.6C11—C12—H12B109.5
C4—C3—H3119.6H12A—C12—H12B109.5
C5—C4—C3119.43 (17)C11—C12—H12C109.5
C5—C4—H4120.3H12A—C12—H12C109.5
C3—C4—H4120.3H12B—C12—H12C109.5
C4—C5—C6120.97 (19)O3—C13—H13A109.5
C4—C5—H5119.5O3—C13—H13B109.5
C6—C5—H5119.5H13A—C13—H13B109.5
C1—C6—C5120.65 (17)O3—C13—H13C109.5
C1—C6—C7124.88 (16)H13A—C13—H13C109.5
C5—C6—C7114.44 (17)H13B—C13—H13C109.5
N1—C7—C6126.99 (17)
C11—Sn1—O1—C189.09 (16)C6—C1—C2—C32.2 (3)
C9—Sn1—O1—C1115.31 (16)O3—C2—C3—C4179.90 (19)
O2—Sn1—O1—C121.4 (2)C1—C2—C3—C40.1 (3)
N1—Sn1—O1—C19.48 (15)C2—C3—C4—C51.3 (3)
C11—Sn1—O2—C897.99 (17)C3—C4—C5—C60.5 (4)
C9—Sn1—O2—C8108.54 (17)O1—C1—C6—C5178.21 (17)
O1—Sn1—O2—C813.5 (3)C2—C1—C6—C53.0 (3)
N1—Sn1—O2—C81.05 (16)O1—C1—C6—C73.8 (3)
C11—Sn1—N1—C785.14 (18)C2—C1—C6—C7175.00 (18)
C9—Sn1—N1—C7102.15 (18)C4—C5—C6—C11.7 (3)
O1—Sn1—N1—C710.88 (17)C4—C5—C6—C7176.4 (2)
O2—Sn1—N1—C7174.82 (19)N2—N1—C7—C6178.61 (19)
C11—Sn1—N1—N287.99 (15)Sn1—N1—C7—C68.1 (3)
C9—Sn1—N1—N284.72 (15)C1—C6—C7—N11.9 (3)
O1—Sn1—N1—N2175.99 (16)C5—C6—C7—N1180.0 (2)
O2—Sn1—N1—N21.69 (14)Sn1—O2—C8—N20.3 (3)
C7—N1—N2—C8176.23 (19)N1—N2—C8—O21.2 (3)
Sn1—N1—N2—C82.1 (2)C11—Sn1—C9—C10173.4 (2)
Sn1—O1—C1—C64.8 (3)O1—Sn1—C9—C1073.0 (2)
Sn1—O1—C1—C2176.49 (12)O2—Sn1—C9—C1079.8 (2)
C13—O3—C2—C33.9 (3)N1—Sn1—C9—C109.7 (2)
C13—O3—C2—C1176.17 (18)C9—Sn1—C11—C12176.3 (2)
O1—C1—C2—O31.0 (2)O1—Sn1—C11—C1271.0 (2)
C6—C1—C2—O3177.81 (15)O2—Sn1—C11—C1283.6 (2)
O1—C1—C2—C3178.91 (17)N1—Sn1—C11—C1212.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O2i0.962.343.068 (4)132
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Sn(C2H5)2(C9H8N2O3)]
Mr368.98
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2485 (3), 9.8609 (4), 10.4501 (4)
α, β, γ (°)63.521 (2), 68.967 (1), 77.803 (2)
V3)708.79 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.30 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.650, 0.720
No. of measured, independent and
observed [I > 2σ(I)] reflections
14275, 3603, 3458
Rint0.023
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.063, 1.02
No. of reflections3603
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Sn1—C112.1216 (19)Sn1—O22.2162 (14)
Sn1—C92.1217 (18)Sn1—N12.2271 (15)
Sn1—O12.1888 (13)
C11—Sn1—C9153.45 (9)O1—Sn1—O2152.79 (5)
C11—Sn1—O197.19 (7)C11—Sn1—N199.42 (7)
C9—Sn1—O193.40 (7)C9—Sn1—N1106.13 (7)
C11—Sn1—O292.71 (8)O1—Sn1—N182.07 (5)
C9—Sn1—O288.78 (7)O2—Sn1—N171.30 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O2i0.962.343.068 (4)132.00
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for financial support to SS for PhD studies under the Indigenous Scholarship Scheme (PIN Code: 042–111889).

References

First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChen, S.-W., Yin, H.-D. & Wang, D.-Q. (2006). Acta Cryst. E62, m1654–m1655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Khalid, N., Broker, G. A. & Tiekink, E. R. T. (2007a). Acta Cryst. E63, m1025–m1026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Khalid, N. & Parvez, M. (2007c). Acta Cryst. E63, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Meetsma, A., Broker, G. A. & Tiekink, E. R. T. (2007b). Acta Cryst. E63, m1130–m1132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShuja, S., Ali, S., Tahir, M. N., Khalid, N. & Khan, I. U. (2008). Acta Cryst. E64, m531–m532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m963-m964
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds