metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,5′-Di­carb­oxy­bi­phenyl-2,2′-di­carboxyl­ato-κ2O2,O2′)bis­­(1,10-phenanthroline-κ2N,N′)zinc(II) dihydrate

aCollege of Chemistry, Changchun Normal University, Changchun 130032, People's Republic of China, and bChangchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun Center of Mass Spectrometry, Changchun 130022, People's Republic of China
*Correspondence e-mail: rzchenchem@yahoo.cn

(Received 5 May 2008; accepted 26 May 2008; online 7 June 2008)

In the title compound, [Zn(C16H8O8)(C12H8N2)2]·2H2O, the ZnII atom is located on a twofold rotation axis and is six-coordinated by two O atoms from a 5,5′-dicarboxy­biphenyl-2,2′-dicarboxyl­ate ligand and four N atoms from two 1,10-phenanthroline mol­ecules in a distorted octa­hedral geometry. The crystal structure involves O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Che et al. (2006[Che, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286-m288.]); Chen et al. (2008[Chen, R., Guo, F. & Meng, F. (2008). Acta Cryst. E64, m761.]); Lehn (1990[Lehn, J. M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304-1305.]); Zang et al. (2006[Zang, S.-Q., Yang, S., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174-180.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C16H8O8)(C12H8N2)2]·2H2O

  • Mr = 790.03

  • Monoclinic, C 2/c

  • a = 16.901 (5) Å

  • b = 9.473 (3) Å

  • c = 22.126 (7) Å

  • β = 96.429 (5)°

  • V = 3520.4 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 (2) K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.817, Tmax = 0.853

  • 9664 measured reflections

  • 3487 independent reflections

  • 2437 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.124

  • S = 1.04

  • 3487 reflections

  • 255 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 2.102 (2)
Zn1—N1 2.130 (3)
Zn1—N2 2.199 (3)
O1—Zn1—O1i 106.16 (11)
O1—Zn1—N1i 98.70 (10)
O1—Zn1—N1 87.72 (10)
N1i—Zn1—N1 169.36 (16)
O1—Zn1—N2 162.88 (11)
N1—Zn1—N2 76.44 (13)
O1—Zn1—N2i 82.94 (10)
N1—Zn1—N2i 96.08 (12)
N2—Zn1—N2i 92.23 (15)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2ii 0.82 1.74 2.538 (3) 162
O1W—H1B⋯O4iii 0.86 (3) 2.24 (2) 2.966 (4) 143 (3)
O1W—H1A⋯O2 0.85 (3) 2.00 (2) 2.808 (4) 159 (4)
Symmetry codes: (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the construction of new coordination polymers, multi-carboxylates act as multifunctional organic ligands not only due to their various coordination modes, resulting from fully or partially deprotonated sites, to allow for the large diversity in topologies, but also due to the ability to act as hydrogen-bond acceptors and donors to assemble supramolecular structures (Che et al., 2006; Chen et al., 2008; Lehn, 1990). We chose biphenyl-2,5,2',5'-tetracarboxylic acid (H4bptc) as a bridging ligand, 1,10-phenanthroline (phen) as a neutral ligand, and zinc(II) as a metal center, generating the title compound. We report here its crystal structure.

In the title compound, the ZnII atom, lying on a twofold rotation axis, is six-coordinated by two O atoms from one H2bptc ligand and four N atoms from two phen molecules in a distorted octahedral geometry (Fig. 1). The twofold rotation axis passes through the midpoint of the bond connecting two benzene rings of the H2bptc ligand. The bond lengths are within the normal ranges (Table 1) (Zang et al., 2006). The crystal structure involves O—H···O hydrogen bonds between the carboxylate O atoms and water molecules (Table 2).

Related literature top

For related literature, see: Che et al. (2006); Chen et al. (2008); Lehn (1990); Zang et al. (2006).

Experimental top

A mixture of ZnCl2.2H2O (0.017 g, 0.1 mmol), H4bptc (0.066 g, 0.2 mmol), phen (0.040 g, 0.2 mmol) and H2O(15 ml) in a 25 ml Teflon-lined stainless steel reactor was heated from 298 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h. After cooling to 298 K, colorless crystals of the title compound were obtained from the reaction.

Refinement top

H atoms bonded to C atoms and carboxylate O atom were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The water H-atoms were located from a difference Fourier map and refined with a distance restraint of O—H = 0.85 (1) Å and Uiso(H) = 0.064 Å2.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1-x, y, 1.5-z.]
(5,5'-Dicarboxybiphenyl-2,2'-dicarboxylato-κ2O2,O2')bis(1,10- phenanthroline-κ2N,N')zinc(II) dihydrate top
Crystal data top
[Zn(C16H8O8)(C12H8N2)2]·2H2OF(000) = 1624
Mr = 790.03Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3487 reflections
a = 16.901 (5) Åθ = 2.0–26.0°
b = 9.473 (3) ŵ = 0.77 mm1
c = 22.126 (7) ÅT = 293 K
β = 96.429 (5)°Block, colorless
V = 3520.4 (19) Å30.26 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3487 independent reflections
Radiation source: fine-focus sealed tube2437 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 26.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2018
Tmin = 0.817, Tmax = 0.853k = 1111
9664 measured reflectionsl = 2127
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.8309P]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Zn(C16H8O8)(C12H8N2)2]·2H2OV = 3520.4 (19) Å3
Mr = 790.03Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.901 (5) ŵ = 0.77 mm1
b = 9.473 (3) ÅT = 293 K
c = 22.126 (7) Å0.26 × 0.22 × 0.20 mm
β = 96.429 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2437 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.853Rint = 0.049
9664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
3487 reflectionsΔρmin = 0.22 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3739 (2)0.3651 (5)0.63923 (18)0.0637 (11)
H10.35430.29580.66340.076*
C20.3354 (3)0.3873 (6)0.5804 (2)0.0880 (16)
H20.29130.33370.56560.106*
C30.3645 (3)0.4896 (6)0.5454 (2)0.0926 (17)
H30.33900.50770.50670.111*
C40.4311 (3)0.5664 (5)0.5667 (2)0.0762 (14)
C50.4663 (4)0.6727 (6)0.5317 (2)0.0988 (19)
H50.44240.69480.49290.119*
C60.5326 (4)0.7401 (6)0.5538 (3)0.106 (2)
H60.55420.80740.52980.127*
C70.5713 (3)0.7116 (4)0.6134 (2)0.0776 (14)
C80.6414 (4)0.7740 (5)0.6377 (3)0.098 (2)
H80.66590.84080.61520.117*
C90.6744 (3)0.7386 (5)0.6936 (3)0.0906 (17)
H90.72220.77930.70980.109*
C100.6361 (3)0.6400 (4)0.7274 (2)0.0722 (13)
H100.65930.61640.76610.087*
C110.5368 (3)0.6116 (4)0.6493 (2)0.0600 (11)
C120.4662 (3)0.5378 (4)0.62567 (18)0.0588 (11)
C130.40756 (18)0.1983 (3)0.81456 (14)0.0328 (7)
C140.47901 (16)0.1060 (3)0.82887 (12)0.0264 (7)
C150.51756 (16)0.0460 (3)0.78249 (12)0.0240 (6)
C160.58975 (17)0.0230 (3)0.79802 (13)0.0299 (7)
H160.61690.06130.76760.036*
C170.62178 (18)0.0353 (3)0.85843 (14)0.0335 (7)
C180.58141 (19)0.0192 (4)0.90393 (14)0.0421 (9)
H180.60210.00940.94450.051*
C190.51007 (18)0.0882 (3)0.88893 (13)0.0383 (8)
H190.48240.12350.91970.046*
C200.6999 (2)0.1096 (4)0.87475 (16)0.0460 (9)
N10.43688 (18)0.4390 (3)0.66158 (13)0.0510 (8)
N20.5682 (2)0.5791 (3)0.70633 (15)0.0563 (8)
O10.40798 (12)0.2849 (2)0.77191 (9)0.0370 (5)
O20.35134 (14)0.1861 (3)0.84667 (11)0.0646 (8)
O1W0.33466 (18)0.0544 (3)0.95823 (12)0.0704 (8)
O30.73266 (15)0.1494 (3)0.82746 (11)0.0707 (9)
H3A0.77490.18930.83840.106*
O40.72855 (15)0.1289 (3)0.92612 (11)0.0786 (10)
Zn10.50000.41820 (6)0.75000.0430 (2)
H1B0.315 (2)0.112 (3)0.9823 (14)0.064*
H1A0.333 (2)0.110 (3)0.9282 (12)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (3)0.081 (3)0.058 (3)0.011 (2)0.009 (2)0.017 (2)
C20.054 (3)0.135 (5)0.074 (3)0.021 (3)0.002 (2)0.021 (3)
C30.085 (4)0.133 (5)0.061 (3)0.046 (4)0.016 (3)0.038 (3)
C40.092 (4)0.076 (3)0.065 (3)0.033 (3)0.030 (3)0.029 (3)
C50.145 (6)0.088 (4)0.072 (4)0.041 (4)0.049 (4)0.042 (3)
C60.168 (6)0.065 (4)0.097 (5)0.018 (4)0.071 (4)0.030 (3)
C70.116 (4)0.045 (3)0.084 (4)0.007 (3)0.065 (3)0.006 (2)
C80.151 (6)0.051 (3)0.109 (5)0.032 (3)0.093 (4)0.018 (3)
C90.113 (4)0.068 (3)0.104 (4)0.040 (3)0.071 (4)0.032 (3)
C100.093 (4)0.052 (2)0.081 (3)0.023 (2)0.047 (3)0.020 (2)
C110.083 (3)0.035 (2)0.070 (3)0.007 (2)0.044 (2)0.0001 (19)
C120.076 (3)0.051 (2)0.056 (3)0.027 (2)0.033 (2)0.0180 (19)
C130.0281 (18)0.0396 (18)0.0312 (18)0.0106 (14)0.0054 (14)0.0015 (15)
C140.0225 (16)0.0314 (17)0.0255 (16)0.0040 (12)0.0037 (12)0.0001 (12)
C150.0231 (16)0.0238 (15)0.0253 (16)0.0002 (11)0.0036 (12)0.0000 (11)
C160.0247 (17)0.0352 (17)0.0304 (18)0.0077 (13)0.0056 (13)0.0018 (13)
C170.0262 (18)0.0431 (18)0.0310 (18)0.0093 (14)0.0018 (13)0.0017 (14)
C180.039 (2)0.063 (2)0.0236 (18)0.0165 (17)0.0000 (14)0.0008 (16)
C190.0358 (19)0.054 (2)0.0266 (17)0.0185 (16)0.0097 (14)0.0025 (15)
C200.033 (2)0.070 (3)0.035 (2)0.0191 (17)0.0034 (16)0.0049 (17)
N10.051 (2)0.0519 (19)0.052 (2)0.0120 (16)0.0165 (15)0.0146 (15)
N20.072 (2)0.0382 (17)0.066 (2)0.0056 (17)0.0362 (18)0.0067 (16)
O10.0319 (13)0.0374 (12)0.0422 (13)0.0101 (10)0.0063 (10)0.0116 (10)
O20.0449 (16)0.098 (2)0.0564 (17)0.0427 (15)0.0294 (12)0.0411 (15)
O1W0.079 (2)0.088 (2)0.0457 (19)0.0195 (17)0.0126 (15)0.0143 (15)
O30.0530 (17)0.121 (2)0.0388 (15)0.0559 (17)0.0072 (12)0.0098 (15)
O40.0610 (19)0.133 (3)0.0394 (16)0.0561 (18)0.0040 (13)0.0029 (16)
Zn10.0470 (4)0.0373 (3)0.0467 (4)0.0000.0144 (3)0.000
Geometric parameters (Å, º) top
C1—N11.323 (5)C13—O21.254 (4)
C1—C21.405 (6)C13—C141.496 (4)
C1—H10.9300C14—C191.383 (4)
C2—C31.366 (7)C14—C151.396 (4)
C2—H20.9300C15—C161.393 (4)
C3—C41.378 (7)C15—C15i1.493 (5)
C3—H30.9300C16—C171.390 (4)
C4—C121.399 (6)C16—H160.9300
C4—C51.439 (7)C17—C181.378 (4)
C5—C61.334 (7)C17—C201.504 (4)
C5—H50.9300C18—C191.379 (4)
C6—C71.431 (7)C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.378 (7)C20—O41.198 (4)
C7—C111.404 (5)C20—O31.294 (4)
C8—C91.341 (7)N1—Zn12.130 (3)
C8—H80.9300N2—Zn12.199 (3)
C9—C101.399 (6)O1—Zn12.102 (2)
C9—H90.9300O1W—H1B0.86 (3)
C10—N21.321 (5)O1W—H1A0.85 (3)
C10—H100.9300O3—H3A0.8200
C11—N21.348 (5)Zn1—O12.102 (2)
C11—C121.431 (6)Zn1—N12.130 (3)
C12—N11.357 (4)Zn1—N22.199 (3)
C13—O11.251 (3)
N1—C1—C2122.5 (4)C16—C15—C14118.5 (3)
N1—C1—H1118.8C16—C15—C15i118.7 (3)
C2—C1—H1118.8C14—C15—C15i122.7 (3)
C3—C2—C1118.2 (5)C17—C16—C15120.9 (3)
C3—C2—H2120.9C17—C16—H16119.6
C1—C2—H2120.9C15—C16—H16119.6
C2—C3—C4120.8 (5)C18—C17—C16120.0 (3)
C2—C3—H3119.6C18—C17—C20119.5 (3)
C4—C3—H3119.6C16—C17—C20120.5 (3)
C3—C4—C12117.5 (4)C17—C18—C19119.5 (3)
C3—C4—C5123.8 (5)C17—C18—H18120.2
C12—C4—C5118.7 (5)C19—C18—H18120.2
C6—C5—C4121.3 (5)C18—C19—C14121.1 (3)
C6—C5—H5119.4C18—C19—H19119.5
C4—C5—H5119.4C14—C19—H19119.5
C5—C6—C7121.7 (5)O4—C20—O3124.0 (3)
C5—C6—H6119.1O4—C20—C17123.3 (3)
C7—C6—H6119.1O3—C20—C17112.7 (3)
C8—C7—C11117.4 (5)C1—N1—C12118.5 (4)
C8—C7—C6124.2 (5)C1—N1—Zn1126.4 (3)
C11—C7—C6118.3 (5)C12—N1—Zn1115.1 (3)
C9—C8—C7120.2 (5)C10—N2—C11117.7 (4)
C9—C8—H8119.9C10—N2—Zn1128.7 (3)
C7—C8—H8119.9C11—N2—Zn1113.5 (3)
C8—C9—C10119.3 (5)C13—O1—Zn1129.41 (19)
C8—C9—H9120.3H1B—O1W—H1A96 (4)
C10—C9—H9120.3C20—O3—H3A109.5
N2—C10—C9122.6 (5)O1—Zn1—O1i106.16 (11)
N2—C10—H10118.7O1—Zn1—N1i98.70 (10)
C9—C10—H10118.7O1i—Zn1—N1i87.72 (10)
N2—C11—C7122.7 (5)O1—Zn1—N187.72 (10)
N2—C11—C12117.1 (3)O1i—Zn1—N198.70 (10)
C7—C11—C12120.2 (5)N1i—Zn1—N1169.36 (16)
N1—C12—C4122.4 (4)O1—Zn1—N2162.88 (11)
N1—C12—C11117.8 (4)O1i—Zn1—N282.94 (10)
C4—C12—C11119.7 (4)N1i—Zn1—N296.08 (12)
O1—C13—O2123.8 (3)N1—Zn1—N276.44 (13)
O1—C13—C14118.1 (3)O1—Zn1—N2i82.94 (10)
O2—C13—C14118.1 (3)O1i—Zn1—N2i162.88 (11)
C19—C14—C15119.9 (3)N1i—Zn1—N2i76.44 (13)
C19—C14—C13119.0 (3)N1—Zn1—N2i96.08 (12)
C15—C14—C13121.0 (2)N2—Zn1—N2i92.23 (15)
N1—C1—C2—C30.2 (7)C16—C17—C20—O4176.6 (4)
C1—C2—C3—C41.7 (8)C18—C17—C20—O3177.0 (3)
C2—C3—C4—C121.5 (7)C16—C17—C20—O33.8 (5)
C2—C3—C4—C5178.1 (4)C2—C1—N1—C121.4 (6)
C3—C4—C5—C6177.5 (5)C2—C1—N1—Zn1179.3 (3)
C12—C4—C5—C62.2 (8)C4—C12—N1—C11.6 (5)
C4—C5—C6—C70.8 (9)C11—C12—N1—C1176.8 (3)
C5—C6—C7—C8177.4 (5)C4—C12—N1—Zn1179.0 (3)
C5—C6—C7—C111.3 (8)C11—C12—N1—Zn12.6 (4)
C11—C7—C8—C90.1 (7)C9—C10—N2—C112.0 (6)
C6—C7—C8—C9178.6 (5)C9—C10—N2—Zn1178.0 (3)
C7—C8—C9—C101.2 (7)C7—C11—N2—C103.2 (5)
C8—C9—C10—N20.2 (7)C12—C11—N2—C10175.9 (3)
C8—C7—C11—N22.2 (6)C7—C11—N2—Zn1179.8 (3)
C6—C7—C11—N2179.1 (4)C12—C11—N2—Zn10.8 (4)
C8—C7—C11—C12176.9 (4)O2—C13—O1—Zn1135.8 (3)
C6—C7—C11—C121.9 (6)C14—C13—O1—Zn142.9 (4)
C3—C4—C12—N10.2 (6)C13—O1—Zn1—O1i63.6 (2)
C5—C4—C12—N1179.8 (4)C13—O1—Zn1—N1i26.5 (3)
C3—C4—C12—C11178.2 (4)C13—O1—Zn1—N1162.0 (3)
C5—C4—C12—C111.5 (6)C13—O1—Zn1—N2176.0 (3)
N2—C11—C12—N11.2 (5)C13—O1—Zn1—N2i101.6 (3)
C7—C11—C12—N1177.9 (3)C1—N1—Zn1—O19.4 (3)
N2—C11—C12—C4179.6 (3)C12—N1—Zn1—O1171.3 (2)
C7—C11—C12—C40.5 (6)C1—N1—Zn1—O1i96.6 (3)
O1—C13—C14—C19134.7 (3)C12—N1—Zn1—O1i82.7 (2)
O2—C13—C14—C1944.2 (4)C1—N1—Zn1—N1i136.8 (3)
O1—C13—C14—C1540.9 (4)C12—N1—Zn1—N1i43.9 (2)
O2—C13—C14—C15140.3 (3)C1—N1—Zn1—N2177.1 (3)
C19—C14—C15—C164.1 (4)C12—N1—Zn1—N22.2 (2)
C13—C14—C15—C16171.4 (3)C1—N1—Zn1—N2i92.1 (3)
C19—C14—C15—C15i172.4 (2)C12—N1—Zn1—N2i88.6 (2)
C13—C14—C15—C15i12.1 (4)C10—N2—Zn1—O1162.7 (3)
C14—C15—C16—C171.7 (4)C11—N2—Zn1—O121.1 (5)
C15i—C15—C16—C17175.0 (2)C10—N2—Zn1—O1i73.9 (3)
C15—C16—C17—C181.1 (5)C11—N2—Zn1—O1i102.3 (2)
C15—C16—C17—C20179.8 (3)C10—N2—Zn1—N1i13.1 (3)
C16—C17—C18—C191.3 (5)C11—N2—Zn1—N1i170.7 (2)
C20—C17—C18—C19179.5 (3)C10—N2—Zn1—N1174.6 (3)
C17—C18—C19—C141.1 (5)C11—N2—Zn1—N11.6 (2)
C15—C14—C19—C183.9 (5)C10—N2—Zn1—N2i89.7 (3)
C13—C14—C19—C18171.7 (3)C11—N2—Zn1—N2i94.1 (3)
C18—C17—C20—O42.6 (6)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.821.742.538 (3)162
O1W—H1B···O4iii0.86 (3)2.24 (2)2.966 (4)143 (3)
O1W—H1A···O20.85 (3)2.00 (2)2.808 (4)159 (4)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C16H8O8)(C12H8N2)2]·2H2O
Mr790.03
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.901 (5), 9.473 (3), 22.126 (7)
β (°) 96.429 (5)
V3)3520.4 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.817, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
9664, 3487, 2437
Rint0.049
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.125, 1.04
No. of reflections3487
No. of parameters255
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O12.102 (2)Zn1—N22.199 (3)
Zn1—N12.130 (3)
O1—Zn1—O1i106.16 (11)N1—Zn1—N276.44 (13)
O1—Zn1—N1i98.70 (10)O1—Zn1—N2i82.94 (10)
O1—Zn1—N187.72 (10)N1—Zn1—N2i96.08 (12)
N1i—Zn1—N1169.36 (16)N2—Zn1—N2i92.23 (15)
O1—Zn1—N2162.88 (11)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2ii0.821.742.538 (3)162
O1W—H1B···O4iii0.86 (3)2.24 (2)2.966 (4)143 (3)
O1W—H1A···O20.85 (3)2.00 (2)2.808 (4)159 (4)
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1, y, z+2.
 

Acknowledgements

The authors thank Changchun Normal University for supporting this work.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B., Liu, H., Liu, C.-B. & Liu, B. (2006). Acta Cryst. E62, m286–m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, R., Guo, F. & Meng, F. (2008). Acta Cryst. E64, m761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLehn, J. M. (1990). Angew. Chem. Int. Ed. Engl. 29, 1304–1305.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZang, S.-Q., Yang, S., Li, Y.-Z., Ni, Z.-P. & Meng, Q.-J. (2006). Inorg. Chem. 45, 174–180.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds