metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(N-benzoyl-N′,N′-di­benzyl­thio­ureato-κ2O,S)nickel(II)

aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, bInstituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, cInstituto de Ciencia y Tecnología de Materiales, Universidad de la Habana, Habana 10400, Cuba, and dLaboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba
*Correspondence e-mail: hperez@fq.uh.cu

(Received 23 May 2008; accepted 6 June 2008; online 13 June 2008)

In the title compound, [Ni(C22H19N2OS)2], the NiII atom is coordinated by the S and O atoms of two N-benzoyl-N′,N′-dibenzyl­thio­ureate ligands in a slightly distorted square-planar geometry. The two O atoms are cis, as are the two S atoms.

Related literature

For general background, see: Jia et al. (2007[Jia, D.-X., Zhu, A.-M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059-2063.]). For related structures, see: Arslan et al. (2003[Arslan, H., Flörke, U. & Külcü, N. (2003). Transition Met. Chem. 28, 816-819.]); Pérez et al. (2008[Pérez, H., Mascarenhas, Y., Plutín, A. M., Souza Corrêa, R. de & Duque, J. (2008). Acta Cryst. E64, m503.]). For the synthesis of the ligand, see: Hernández et al. (2003[Hernández, W., Spodine, E., Muñoz, J. C., Beyer, L., Schröder, U., Ferreira, J. & Pavani, M. (2003). Bioinorg. Chem. Appl. 1, 271-284.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C22H19N2OS)2]

  • Mr = 777.61

  • Orthorhombic, P 21 21 21

  • a = 5.5645 (1) Å

  • b = 19.7873 (7) Å

  • c = 33.859 (1) Å

  • V = 3728.09 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 294 K

  • 0.34 × 0.05 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.765, Tmax = 0.950

  • 16007 measured reflections

  • 5260 independent reflections

  • 4302 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.131

  • S = 1.17

  • 5260 reflections

  • 479 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1448 Friedel pairs

  • Flack parameter: 0.02 (3)

Table 1
Selected geometric parameters (Å, °)

Ni1—O2 1.837 (5)
Ni1—O1 1.855 (5)
Ni1—S2 2.128 (2)
Ni1—S1 2.141 (2)
O2—Ni1—O1 84.5 (2)
O2—Ni1—S2 95.94 (17)
O1—Ni1—S2 177.9 (2)
O2—Ni1—S1 179.2 (2)
O1—Ni1—S1 95.23 (18)
S2—Ni1—S1 84.38 (9)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-acyl-N',N'-disubstituted thioureas are well known as chelating agents. Over recent years, many transition metal complexes with N-benzoyl- and N-furoyl-N',N'-disubstituted thioureas have been reported (Jia et al., 2007). During the complex formation, the ligand is deprotonated, which results in a neutral complex with a six-membered ring chelating metal ion. In this paper, we report the crystal structure of the title compound.

In the structure, two benzoylthiourea molecules are bonded to the central NiII ion in cis positions, as shown in Fig. 1. The coordination geometry is a slightly distorted square-plane, as reflected by the angles O1—Ni1—S2 = 177.9 (2) and O2—Ni1—S1 = 179.2 (2)° (Table 1). The Ni—S and Ni—O bond lengths lie within the range of those found in the related structures (Arslan et al., 2003). The lengths of C—O, C—S and C—N bonds in the chelate ring are between characteristic single and double bond lengths (Pérez et al., 2008), which are shorter than single bond and longer than double bond. Fig. 2 shows the arrangement of the complex molecules in the unit cell.

Related literature top

For general background, see: Jia et al. (2007). For related structures, see: Arslan et al. (2003); Pérez et al. (2008). For the synthesis of the ligand, see: Hernández et al. (2003).

Experimental top

N-benzoyl-N',N'-dibenzylthiourea ligand was synthesized according to a procedure described by Hernández et al. (2003), by converting benzoyl chloride into benzoyl isothiocyanate and then condensing with an appropriate amine. To an ethanol solution (30 ml) containing the ligand (0.96 g, 3 mmol) was added an ethanol solution of Ni(CH3COO)2.4H2O (0.25 g, 1 mmol). The solution was stirred at room temperature for 2 h, and at once a solution of NaOH (1 N) was added to adjust pH to the neutral value. The mixture was filtered and the filtrate was evaporated under reduced pressure to give a red solid, which was washed with acetone. Single crystals were obtained by slow evaporation of a chloroform/N,N-diphenylformamide solution (1:1, v/v) of the complex.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the unit cell of the title compound.
cis-Bis(N-benzoyl-N',N'-dibenzylthioureato- κ2O,S)nickel(II) top
Crystal data top
[Ni(C22H19N2OS)2]F(000) = 1624
Mr = 777.61Dx = 1.386 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24585 reflections
a = 5.5645 (1) Åθ = 2.9–25.0°
b = 19.7873 (7) ŵ = 0.68 mm1
c = 33.859 (1) ÅT = 294 K
V = 3728.09 (18) Å3Needle, red
Z = 40.34 × 0.05 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
4302 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.123
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 25.0°, θmin = 3.2°
Tmin = 0.765, Tmax = 0.950h = 65
16007 measured reflectionsk = 2323
5260 independent reflectionsl = 3940
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + 5.999P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.084(Δ/σ)max < 0.001
wR(F2) = 0.131Δρmax = 0.35 e Å3
S = 1.17Δρmin = 0.48 e Å3
5260 reflectionsAbsolute structure: Flack (1983), 1448 Friedel pairs
479 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Crystal data top
[Ni(C22H19N2OS)2]V = 3728.09 (18) Å3
Mr = 777.61Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5645 (1) ŵ = 0.68 mm1
b = 19.7873 (7) ÅT = 294 K
c = 33.859 (1) Å0.34 × 0.05 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
5260 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
4302 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.950Rint = 0.123
16007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.35 e Å3
S = 1.17Δρmin = 0.48 e Å3
5260 reflectionsAbsolute structure: Flack (1983), 1448 Friedel pairs
479 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.21477 (16)0.47548 (4)0.38022 (3)0.0437 (3)
S20.0611 (4)0.42371 (10)0.41155 (8)0.0582 (7)
S10.2840 (5)0.37861 (10)0.35445 (8)0.0694 (7)
N40.3836 (10)0.4556 (2)0.4654 (2)0.0395 (17)
O20.1541 (9)0.5590 (2)0.40168 (17)0.0502 (15)
N30.1887 (11)0.5475 (3)0.44201 (19)0.0417 (17)
N10.5878 (12)0.4449 (3)0.3040 (2)0.0445 (17)
O10.4633 (9)0.5193 (2)0.35422 (17)0.0544 (14)
C310.5155 (13)0.5008 (3)0.4918 (3)0.057 (2)
H31A0.67430.48210.49630.068*
H31B0.53560.54410.47870.068*
C240.2165 (13)0.4798 (4)0.4400 (2)0.0417 (18)
N20.4658 (12)0.3396 (3)0.2864 (2)0.0508 (18)
C30.7812 (14)0.5504 (4)0.3122 (2)0.046 (2)
C250.0194 (13)0.6554 (3)0.4309 (2)0.0383 (19)
C150.3589 (15)0.1551 (4)0.2963 (3)0.060 (2)
H150.22140.15140.28080.072*
C100.4474 (14)0.2178 (4)0.3044 (2)0.040 (2)
C90.3175 (14)0.2788 (3)0.2901 (3)0.050 (2)
H9A0.2480.26870.26440.06*
H9B0.18620.28830.30810.06*
C160.6170 (14)0.3428 (4)0.2507 (3)0.054 (2)
H16A0.70590.3010.24770.065*
H16B0.73160.37960.2530.065*
C280.0128 (16)0.7928 (4)0.4458 (3)0.057 (3)
H280.00870.83880.45140.069*
C380.4472 (13)0.3833 (3)0.4672 (3)0.043 (2)
H38A0.37690.36030.44470.052*
H38B0.62040.37870.46540.052*
C10.5936 (14)0.5015 (4)0.3256 (3)0.045 (2)
C230.0152 (15)0.5805 (3)0.4229 (3)0.044 (2)
C370.1911 (14)0.5516 (3)0.5343 (3)0.049 (2)
H370.13240.57320.51190.059*
C51.1304 (15)0.5778 (4)0.2741 (3)0.066 (3)
H51.24770.56480.25610.079*
C420.2177 (17)0.2847 (4)0.5739 (3)0.061 (2)
H420.16890.26280.59680.073*
C430.4345 (18)0.2682 (4)0.5563 (3)0.070 (3)
H430.53410.23570.56760.084*
C320.3930 (13)0.5123 (3)0.5319 (3)0.047 (2)
C400.1427 (13)0.3649 (4)0.5220 (3)0.044 (2)
H400.04040.39590.510.052*
C260.2030 (14)0.6860 (3)0.4520 (2)0.050 (2)
H260.32960.660.46160.059*
C290.1682 (15)0.7645 (4)0.4247 (3)0.057 (2)
H290.29260.79130.41510.069*
C170.4570 (15)0.3541 (4)0.2150 (3)0.053 (2)
C20.4545 (14)0.3915 (4)0.3127 (2)0.043 (2)
C270.1995 (15)0.7549 (4)0.4590 (2)0.051 (2)
H270.32510.77520.47260.061*
C120.7559 (17)0.1644 (5)0.3434 (3)0.077 (3)
H120.89150.16770.35940.092*
C350.1550 (17)0.5270 (4)0.6035 (3)0.068 (3)
H350.07550.53220.62750.081*
C300.1670 (13)0.6960 (4)0.4175 (3)0.052 (2)
H300.29280.67670.40330.063*
C330.4729 (15)0.4803 (4)0.5658 (3)0.057 (2)
H330.60990.45340.56470.068*
C390.3608 (12)0.3498 (3)0.5050 (2)0.0347 (19)
C210.3153 (17)0.3233 (4)0.1501 (3)0.067 (3)
H210.32590.29530.12810.08*
C360.0719 (16)0.5593 (4)0.5708 (3)0.058 (2)
H360.0640.58650.57250.069*
C80.7795 (16)0.6155 (4)0.3267 (3)0.064 (2)
H80.66120.62850.34450.077*
C40.9590 (14)0.5329 (4)0.2857 (3)0.053 (2)
H40.96190.48930.27550.064*
C200.1462 (16)0.3726 (5)0.1514 (3)0.070 (3)
H200.04070.37860.13040.084*
C180.2883 (17)0.4056 (4)0.2155 (3)0.070 (3)
H180.27950.43490.2370.084*
C410.0754 (14)0.3336 (4)0.5573 (3)0.058 (2)
H410.06730.3460.56960.07*
C440.5013 (13)0.3004 (4)0.5218 (3)0.048 (2)
H440.6450.28840.50970.058*
C61.1298 (15)0.6425 (5)0.2892 (3)0.066 (3)
H61.24950.67280.28180.079*
C190.1326 (17)0.4131 (5)0.1839 (4)0.078 (3)
H190.01570.44670.18480.094*
C130.660 (2)0.1020 (5)0.3345 (4)0.085 (3)
H130.72770.06310.3450.102*
C220.4738 (17)0.3145 (4)0.1816 (3)0.059 (3)
H220.59220.28140.18010.071*
C70.9547 (17)0.6622 (4)0.3148 (3)0.072 (3)
H70.95130.70630.32430.086*
C340.3522 (18)0.4875 (4)0.6014 (3)0.073 (3)
H340.40720.46520.62380.087*
C110.6491 (15)0.2218 (4)0.3286 (3)0.060 (3)
H110.71290.26390.33480.072*
C140.4646 (19)0.0972 (4)0.3101 (3)0.074 (3)
H140.40440.05510.30290.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0514 (6)0.0432 (5)0.0365 (6)0.0040 (5)0.0014 (5)0.0003 (5)
S20.0683 (15)0.0418 (11)0.0645 (18)0.0003 (11)0.0191 (13)0.0026 (11)
S10.1009 (19)0.0482 (12)0.0590 (17)0.0005 (13)0.0286 (16)0.0022 (11)
N40.040 (4)0.028 (3)0.050 (5)0.002 (3)0.006 (3)0.001 (3)
O20.051 (3)0.043 (3)0.057 (4)0.003 (2)0.018 (3)0.000 (3)
N30.045 (4)0.032 (3)0.049 (5)0.005 (3)0.001 (4)0.000 (3)
N10.051 (4)0.049 (4)0.033 (5)0.002 (3)0.002 (3)0.001 (4)
O10.056 (3)0.056 (3)0.051 (4)0.001 (3)0.016 (3)0.010 (3)
C310.044 (5)0.047 (5)0.079 (8)0.002 (4)0.017 (5)0.001 (5)
C240.044 (4)0.044 (4)0.037 (5)0.002 (4)0.008 (4)0.006 (4)
N20.064 (4)0.044 (4)0.044 (5)0.007 (4)0.002 (4)0.010 (4)
C30.045 (5)0.049 (5)0.044 (6)0.000 (4)0.008 (5)0.004 (4)
C250.039 (4)0.044 (4)0.032 (5)0.002 (4)0.000 (4)0.005 (4)
C150.065 (6)0.059 (6)0.057 (7)0.002 (5)0.003 (5)0.008 (5)
C100.039 (5)0.051 (5)0.030 (5)0.005 (4)0.015 (4)0.008 (4)
C90.055 (5)0.045 (4)0.049 (6)0.005 (4)0.005 (4)0.001 (4)
C160.057 (6)0.059 (5)0.046 (6)0.005 (4)0.016 (5)0.004 (5)
C280.073 (6)0.041 (5)0.059 (7)0.003 (5)0.014 (5)0.009 (5)
C380.031 (4)0.041 (4)0.057 (7)0.011 (3)0.004 (4)0.000 (4)
C10.044 (5)0.040 (5)0.050 (6)0.002 (4)0.014 (5)0.010 (4)
C230.058 (6)0.033 (4)0.040 (6)0.003 (4)0.014 (5)0.006 (4)
C370.051 (5)0.040 (4)0.055 (6)0.008 (4)0.006 (5)0.001 (4)
C50.054 (6)0.066 (6)0.078 (8)0.001 (5)0.020 (5)0.003 (6)
C420.073 (6)0.050 (5)0.060 (7)0.010 (5)0.006 (6)0.010 (5)
C430.069 (7)0.050 (6)0.090 (9)0.013 (5)0.004 (6)0.004 (6)
C320.050 (5)0.035 (4)0.056 (6)0.006 (4)0.004 (4)0.007 (4)
C400.042 (5)0.044 (5)0.044 (6)0.001 (4)0.008 (4)0.004 (4)
C260.053 (5)0.048 (5)0.047 (6)0.004 (4)0.001 (5)0.008 (4)
C290.064 (6)0.043 (5)0.064 (7)0.006 (4)0.003 (5)0.002 (4)
C170.059 (5)0.044 (5)0.055 (7)0.006 (4)0.016 (5)0.000 (5)
C20.055 (5)0.059 (5)0.016 (5)0.012 (4)0.008 (4)0.007 (4)
C270.061 (5)0.050 (5)0.042 (6)0.001 (4)0.001 (5)0.001 (4)
C120.069 (7)0.093 (7)0.068 (8)0.028 (7)0.003 (6)0.006 (6)
C350.097 (7)0.054 (5)0.052 (7)0.002 (6)0.005 (5)0.006 (5)
C300.048 (5)0.047 (5)0.062 (7)0.005 (4)0.002 (5)0.005 (4)
C330.071 (6)0.056 (5)0.043 (6)0.014 (5)0.024 (5)0.000 (5)
C390.035 (4)0.032 (4)0.038 (5)0.005 (3)0.006 (4)0.004 (4)
C210.086 (7)0.073 (6)0.041 (6)0.003 (6)0.010 (6)0.011 (5)
C360.055 (5)0.055 (5)0.063 (8)0.002 (4)0.001 (5)0.008 (5)
C80.063 (6)0.068 (6)0.060 (7)0.004 (5)0.006 (5)0.005 (5)
C40.056 (5)0.059 (5)0.045 (6)0.007 (5)0.016 (4)0.003 (5)
C200.074 (7)0.078 (6)0.058 (8)0.010 (5)0.015 (6)0.016 (6)
C180.091 (7)0.065 (6)0.052 (7)0.019 (6)0.007 (6)0.007 (5)
C410.041 (5)0.070 (6)0.064 (8)0.008 (5)0.011 (5)0.003 (5)
C440.037 (5)0.044 (4)0.064 (7)0.009 (4)0.003 (4)0.000 (5)
C60.064 (6)0.070 (6)0.064 (8)0.012 (5)0.000 (5)0.006 (5)
C190.092 (8)0.067 (6)0.076 (9)0.028 (5)0.004 (7)0.003 (6)
C130.094 (9)0.075 (7)0.085 (9)0.013 (6)0.008 (7)0.025 (6)
C220.083 (7)0.048 (5)0.047 (7)0.012 (5)0.005 (5)0.017 (5)
C70.081 (7)0.056 (6)0.078 (9)0.013 (5)0.011 (6)0.016 (5)
C340.115 (8)0.066 (6)0.037 (6)0.011 (6)0.013 (6)0.004 (5)
C110.058 (6)0.067 (6)0.055 (7)0.004 (5)0.003 (5)0.009 (5)
C140.086 (7)0.054 (6)0.083 (9)0.005 (6)0.001 (7)0.002 (6)
Geometric parameters (Å, º) top
Ni1—O21.837 (5)C42—C411.370 (11)
Ni1—O11.855 (5)C42—C431.385 (12)
Ni1—S22.128 (2)C42—H420.93
Ni1—S12.141 (2)C43—C441.382 (12)
S2—C241.706 (7)C43—H430.93
S1—C21.722 (8)C32—C331.386 (11)
N4—C241.353 (9)C40—C391.376 (9)
N4—C311.460 (9)C40—C411.398 (11)
N4—C381.474 (7)C40—H400.93
O2—C231.259 (9)C26—C271.384 (9)
N3—C231.333 (10)C26—H260.93
N3—C241.352 (8)C29—C301.377 (10)
N1—C21.326 (9)C29—H290.93
N1—C11.338 (9)C17—C221.378 (12)
O1—C11.260 (9)C17—C181.385 (10)
C31—C321.536 (11)C27—H270.93
C31—H31A0.97C12—C111.376 (11)
C31—H31B0.97C12—C131.380 (12)
N2—C21.359 (9)C12—H120.93
N2—C91.464 (8)C35—C341.348 (11)
N2—C161.475 (10)C35—C361.359 (12)
C3—C41.378 (10)C35—H350.93
C3—C81.379 (9)C30—H300.93
C3—C11.495 (10)C33—C341.388 (12)
C25—C261.385 (10)C33—H330.93
C25—C301.389 (10)C39—C441.375 (10)
C25—C231.506 (9)C21—C201.355 (11)
C15—C101.364 (10)C21—C221.395 (12)
C15—C141.369 (11)C21—H210.93
C15—H150.93C36—H360.93
C10—C111.392 (11)C8—C71.403 (11)
C10—C91.488 (10)C8—H80.93
C9—H9A0.97C4—H40.93
C9—H9B0.97C20—C191.363 (13)
C16—C171.519 (11)C20—H200.93
C16—H16A0.97C18—C191.386 (13)
C16—H16B0.97C18—H180.93
C28—C271.356 (11)C41—H410.93
C28—C291.356 (11)C44—H440.93
C28—H280.93C6—C71.361 (12)
C38—C391.518 (10)C6—H60.93
C38—H38A0.97C19—H190.93
C38—H38B0.97C13—C141.366 (13)
C37—C321.368 (10)C13—H130.93
C37—C361.411 (12)C22—H220.93
C37—H370.93C7—H70.93
C5—C41.360 (10)C34—H340.93
C5—C61.378 (11)C11—H110.93
C5—H50.93C14—H140.93
O2—Ni1—O184.5 (2)C39—C40—C41119.9 (7)
O2—Ni1—S295.94 (17)C39—C40—H40120.1
O1—Ni1—S2177.9 (2)C41—C40—H40120.1
O2—Ni1—S1179.2 (2)C27—C26—C25120.5 (7)
O1—Ni1—S195.23 (18)C27—C26—H26119.7
S2—Ni1—S184.38 (9)C25—C26—H26119.7
C24—S2—Ni1109.5 (3)C28—C29—C30119.7 (8)
C2—S1—Ni1107.6 (3)C28—C29—H29120.1
C24—N4—C31121.1 (6)C30—C29—H29120.1
C24—N4—C38122.3 (6)C22—C17—C18118.5 (9)
C31—N4—C38116.6 (6)C22—C17—C16121.9 (8)
C23—O2—Ni1131.9 (5)C18—C17—C16119.6 (8)
C23—N3—C24123.0 (7)N1—C2—N2115.5 (7)
C2—N1—C1124.0 (7)N1—C2—S1127.5 (6)
C1—O1—Ni1131.5 (5)N2—C2—S1116.8 (6)
N4—C31—C32114.1 (6)C28—C27—C26120.0 (8)
N4—C31—H31A108.7C28—C27—H27120
C32—C31—H31A108.7C26—C27—H27120
N4—C31—H31B108.7C11—C12—C13119.4 (10)
C32—C31—H31B108.7C11—C12—H12120.3
H31A—C31—H31B107.6C13—C12—H12120.3
N3—C24—N4113.5 (6)C34—C35—C36120.4 (10)
N3—C24—S2127.9 (6)C34—C35—H35119.8
N4—C24—S2118.5 (5)C36—C35—H35119.8
C2—N2—C9122.6 (7)C29—C30—C25121.0 (8)
C2—N2—C16122.0 (7)C29—C30—H30119.5
C9—N2—C16115.2 (6)C25—C30—H30119.5
C4—C3—C8118.1 (8)C32—C33—C34121.2 (8)
C4—C3—C1122.5 (7)C32—C33—H33119.4
C8—C3—C1119.4 (8)C34—C33—H33119.4
C26—C25—C30117.8 (7)C44—C39—C40118.8 (8)
C26—C25—C23122.3 (7)C44—C39—C38118.7 (7)
C30—C25—C23119.9 (7)C40—C39—C38122.4 (7)
C10—C15—C14122.5 (9)C20—C21—C22120.3 (9)
C10—C15—H15118.7C20—C21—H21119.8
C14—C15—H15118.7C22—C21—H21119.8
C15—C10—C11117.4 (8)C35—C36—C37120.2 (8)
C15—C10—C9119.9 (8)C35—C36—H36119.9
C11—C10—C9122.6 (7)C37—C36—H36119.9
N2—C9—C10114.8 (6)C3—C8—C7120.6 (8)
N2—C9—H9A108.6C3—C8—H8119.7
C10—C9—H9A108.6C7—C8—H8119.7
N2—C9—H9B108.6C5—C4—C3121.8 (8)
C10—C9—H9B108.6C5—C4—H4119.1
H9A—C9—H9B107.5C3—C4—H4119.1
N2—C16—C17109.0 (7)C21—C20—C19119.1 (9)
N2—C16—H16A109.9C21—C20—H20120.4
C17—C16—H16A109.9C19—C20—H20120.4
N2—C16—H16B109.9C17—C18—C19119.4 (9)
C17—C16—H16B109.9C17—C18—H18120.3
H16A—C16—H16B108.3C19—C18—H18120.3
C27—C28—C29120.9 (7)C42—C41—C40120.6 (8)
C27—C28—H28119.5C42—C41—H41119.7
C29—C28—H28119.5C40—C41—H41119.7
N4—C38—C39112.5 (6)C39—C44—C43121.7 (8)
N4—C38—H38A109.1C39—C44—H44119.1
C39—C38—H38A109.1C43—C44—H44119.1
N4—C38—H38B109.1C7—C6—C5120.2 (8)
C39—C38—H38B109.1C7—C6—H6119.9
H38A—C38—H38B107.8C5—C6—H6119.9
O1—C1—N1129.9 (7)C20—C19—C18121.8 (9)
O1—C1—C3117.1 (7)C20—C19—H19119.1
N1—C1—C3113.0 (8)C18—C19—H19119.1
O2—C23—N3130.8 (7)C14—C13—C12120.2 (10)
O2—C23—C25116.6 (7)C14—C13—H13119.9
N3—C23—C25112.5 (7)C12—C13—H13119.9
C32—C37—C36120.1 (8)C17—C22—C21120.8 (8)
C32—C37—H37120C17—C22—H22119.6
C36—C37—H37120C21—C22—H22119.6
C4—C5—C6119.9 (8)C6—C7—C8119.4 (8)
C4—C5—H5120.1C6—C7—H7120.3
C6—C5—H5120.1C8—C7—H7120.3
C41—C42—C43119.6 (9)C35—C34—C33120.0 (9)
C41—C42—H42120.2C35—C34—H34120
C43—C42—H42120.2C33—C34—H34120
C44—C43—C42119.2 (8)C12—C11—C10121.1 (8)
C44—C43—H43120.4C12—C11—H11119.4
C42—C43—H43120.4C10—C11—H11119.4
C37—C32—C33118.2 (8)C13—C14—C15119.3 (9)
C37—C32—C31120.2 (8)C13—C14—H14120.3
C33—C32—C31121.5 (7)C15—C14—H14120.3

Experimental details

Crystal data
Chemical formula[Ni(C22H19N2OS)2]
Mr777.61
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)5.5645 (1), 19.7873 (7), 33.859 (1)
V3)3728.09 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.34 × 0.05 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.765, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
16007, 5260, 4302
Rint0.123
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.131, 1.17
No. of reflections5260
No. of parameters479
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.48
Absolute structureFlack (1983), 1448 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—O21.837 (5)Ni1—S22.128 (2)
Ni1—O11.855 (5)Ni1—S12.141 (2)
O2—Ni1—O184.5 (2)O2—Ni1—S1179.2 (2)
O2—Ni1—S295.94 (17)O1—Ni1—S195.23 (18)
O1—Ni1—S2177.9 (2)S2—Ni1—S184.38 (9)
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from Brazilian agencies CAPES (Project 018/05) and CNPq (Project 134576/2007–1).

References

First citationArslan, H., Flörke, U. & Külcü, N. (2003). Transition Met. Chem. 28, 816–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHernández, W., Spodine, E., Muñoz, J. C., Beyer, L., Schröder, U., Ferreira, J. & Pavani, M. (2003). Bioinorg. Chem. Appl. 1, 271–284.  Google Scholar
First citationJia, D.-X., Zhu, A.-M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059–2063.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, H., Mascarenhas, Y., Plutín, A. M., Souza Corrêa, R. de & Duque, J. (2008). Acta Cryst. E64, m503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds