metal-organic compounds
catena-Poly[[tris(pyridine-κN)copper(II)]-μ-tetrafluoroterephthalato-κ2O1:O4]
aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
*Correspondence e-mail: cgzheng@126.com
In the title compound, [Cu(C8F4O4)(C5H5N)3]n, the CuII atom, lying on a twofold rotation axis, is five-coordinated by two O atoms from two tetrafluoroterephthalate ligands and three N atoms from three pyridine ligands in a distorted trigonal-bipyramidal geometry. Adjacent CuII atoms are connected via the bridging tetrafluoroterephthalate ligands into a one-dimensional chain running along the [101] direction.
Related literature
For related literature, see: Baeg & Lee (2003); Baruah et al. (2007); Bastin et al. (2008); Cheng et al. (2007); Eddaoudi et al. (2000); Gould et al. (2008); Reineke et al. (1999); Stephenson & Hardie (2006); Yuan et al. (2004); Zhang et al. (2007); Zheng et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808018977/hy2139sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808018977/hy2139Isup2.hkl
All the reagents and solvents employed were commercially available. Tetrafluoroterephthalic acid was purified by recrystallization. According to the literature procedure (Reineke et al., 1999), the title compound was synthesized by slow vapor diffusion at room temperature of pyridine (3 ml) into an N,N-dimethylformamide solution (2 ml) containing a mixture of tetrafluoroterephthalic acid (0.071 g, 0.30 mmol) and Cu(NO3)2.3H2O (0.036 g, 0.15 mmol) diluted with CH3OH (6 ml). After two weeks, blue block-shaped crystals were obtained (yield 55% based on Cu). Analysis, calculated for C23H15CuF4N3O4: C 51.45, H 2.82, N 7.82%; found: C 51.50, H 2.86, N 7.76%.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C8F4O4)(C5H5N)3] | F(000) = 1084 |
Mr = 536.92 | Dx = 1.621 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 7406 reflections |
a = 15.3579 (8) Å | θ = 2.7–28.3° |
b = 8.7652 (5) Å | µ = 1.06 mm−1 |
c = 16.6050 (9) Å | T = 273 K |
β = 100.241 (3)° | Block, blue |
V = 2199.7 (2) Å3 | 0.15 × 0.10 × 0.06 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 1950 independent reflections |
Radiation source: fine-focus sealed tube | 1857 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→18 |
Tmin = 0.857, Tmax = 0.939 | k = −10→10 |
10049 measured reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.076P)2 + 0.2195P], P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.071 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.29 e Å−3 |
1950 reflections | Δρmin = −0.32 e Å−3 |
160 parameters |
[Cu(C8F4O4)(C5H5N)3] | V = 2199.7 (2) Å3 |
Mr = 536.92 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.3579 (8) Å | µ = 1.06 mm−1 |
b = 8.7652 (5) Å | T = 273 K |
c = 16.6050 (9) Å | 0.15 × 0.10 × 0.06 mm |
β = 100.241 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 1950 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1857 reflections with I > 2σ(I) |
Tmin = 0.857, Tmax = 0.939 | Rint = 0.022 |
10049 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.29 e Å−3 |
1950 reflections | Δρmin = −0.32 e Å−3 |
160 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1.0000 | 0.48258 (3) | 0.2500 | 0.03297 (12) | |
F1 | 0.92606 (7) | 0.77593 (17) | 0.00333 (8) | 0.0623 (4) | |
F2 | 0.68438 (9) | 0.54002 (17) | 0.09264 (9) | 0.0671 (4) | |
O1 | 0.92455 (8) | 0.61557 (16) | 0.16170 (8) | 0.0455 (3) | |
O2 | 0.86509 (13) | 0.40923 (19) | 0.09534 (10) | 0.0696 (5) | |
N1 | 1.10527 (11) | 0.49323 (17) | 0.19221 (10) | 0.0389 (4) | |
N2 | 1.0000 | 0.2460 (2) | 0.2500 | 0.0373 (5) | |
C1 | 0.87159 (13) | 0.5462 (2) | 0.10665 (11) | 0.0426 (4) | |
C2 | 0.80884 (12) | 0.6517 (2) | 0.05110 (11) | 0.0380 (4) | |
C3 | 0.83842 (11) | 0.7617 (2) | 0.00333 (11) | 0.0405 (4) | |
C4 | 0.71868 (13) | 0.6428 (2) | 0.04644 (11) | 0.0421 (4) | |
C5 | 1.11090 (14) | 0.6002 (2) | 0.13562 (13) | 0.0497 (5) | |
H5 | 1.0606 | 0.6562 | 0.1145 | 0.060* | |
C6 | 1.18819 (17) | 0.6303 (3) | 0.10757 (16) | 0.0629 (6) | |
H6 | 1.1899 | 0.7058 | 0.0685 | 0.076* | |
C7 | 1.26229 (16) | 0.5481 (3) | 0.13773 (16) | 0.0648 (7) | |
H7 | 1.3154 | 0.5678 | 0.1202 | 0.078* | |
C8 | 1.25719 (14) | 0.4362 (3) | 0.19412 (16) | 0.0627 (6) | |
H8 | 1.3065 | 0.3770 | 0.2144 | 0.075* | |
C9 | 1.17809 (13) | 0.4123 (3) | 0.22054 (13) | 0.0497 (5) | |
H9 | 1.1753 | 0.3371 | 0.2595 | 0.060* | |
C10 | 1.00346 (13) | 0.1681 (2) | 0.18168 (13) | 0.0462 (5) | |
H10 | 1.0056 | 0.2218 | 0.1337 | 0.055* | |
C11 | 1.00405 (16) | 0.0110 (3) | 0.1796 (2) | 0.0640 (7) | |
H11 | 1.0071 | −0.0405 | 0.1312 | 0.077* | |
C12 | 1.0000 | −0.0680 (4) | 0.2500 | 0.0727 (11) | |
H12 | 1.0000 | −0.1741 | 0.2500 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03026 (18) | 0.03081 (18) | 0.03662 (19) | 0.000 | 0.00260 (12) | 0.000 |
F1 | 0.0316 (6) | 0.0927 (10) | 0.0611 (8) | 0.0037 (6) | 0.0038 (5) | 0.0250 (7) |
F2 | 0.0513 (7) | 0.0780 (9) | 0.0705 (9) | −0.0032 (7) | 0.0064 (6) | 0.0393 (7) |
O1 | 0.0377 (7) | 0.0536 (8) | 0.0402 (7) | 0.0054 (6) | −0.0064 (6) | 0.0110 (6) |
O2 | 0.0893 (12) | 0.0491 (10) | 0.0593 (10) | 0.0198 (8) | −0.0170 (9) | 0.0028 (7) |
N1 | 0.0353 (8) | 0.0404 (8) | 0.0402 (9) | −0.0013 (6) | 0.0049 (7) | −0.0037 (6) |
N2 | 0.0348 (10) | 0.0303 (10) | 0.0452 (12) | 0.000 | 0.0033 (9) | 0.000 |
C1 | 0.0415 (10) | 0.0502 (12) | 0.0338 (10) | 0.0121 (9) | 0.0004 (8) | 0.0079 (8) |
C2 | 0.0375 (9) | 0.0422 (10) | 0.0312 (9) | 0.0068 (7) | −0.0024 (7) | 0.0030 (7) |
C3 | 0.0291 (8) | 0.0537 (11) | 0.0364 (9) | 0.0033 (8) | −0.0004 (7) | 0.0041 (8) |
C4 | 0.0419 (10) | 0.0468 (11) | 0.0359 (9) | 0.0003 (8) | 0.0024 (8) | 0.0108 (8) |
C5 | 0.0488 (11) | 0.0494 (12) | 0.0520 (12) | −0.0007 (9) | 0.0121 (9) | 0.0049 (9) |
C6 | 0.0667 (15) | 0.0669 (15) | 0.0601 (14) | −0.0140 (12) | 0.0245 (12) | 0.0020 (11) |
C7 | 0.0447 (12) | 0.0851 (17) | 0.0687 (16) | −0.0165 (12) | 0.0215 (11) | −0.0195 (14) |
C8 | 0.0354 (11) | 0.0820 (17) | 0.0692 (15) | 0.0034 (11) | 0.0052 (10) | −0.0112 (14) |
C9 | 0.0380 (10) | 0.0579 (13) | 0.0512 (12) | 0.0037 (9) | 0.0025 (9) | −0.0002 (10) |
C10 | 0.0416 (10) | 0.0398 (10) | 0.0560 (12) | 0.0010 (8) | 0.0053 (9) | −0.0104 (9) |
C11 | 0.0498 (13) | 0.0455 (13) | 0.094 (2) | 0.0042 (9) | 0.0057 (13) | −0.0265 (12) |
C12 | 0.0525 (19) | 0.0297 (15) | 0.132 (4) | 0.000 | 0.007 (2) | 0.000 |
Cu1—N1 | 2.0236 (16) | C4—C3ii | 1.376 (3) |
Cu1—N1i | 2.0236 (16) | C5—C6 | 1.376 (3) |
Cu1—O1 | 2.0609 (12) | C5—H5 | 0.9300 |
Cu1—O1i | 2.0609 (12) | C6—C7 | 1.365 (4) |
Cu1—N2 | 2.073 (2) | C6—H6 | 0.9300 |
F1—C3 | 1.352 (2) | C7—C8 | 1.368 (4) |
F2—C4 | 1.350 (2) | C7—H7 | 0.9300 |
O1—C1 | 1.266 (2) | C8—C9 | 1.379 (3) |
O2—C1 | 1.216 (3) | C8—H8 | 0.9300 |
N1—C9 | 1.337 (3) | C9—H9 | 0.9300 |
N1—C5 | 1.341 (3) | C10—C11 | 1.377 (3) |
N2—C10 | 1.333 (2) | C10—H10 | 0.9300 |
N2—C10i | 1.333 (2) | C11—C12 | 1.370 (4) |
C1—C2 | 1.523 (2) | C11—H11 | 0.9300 |
C2—C4 | 1.375 (3) | C12—C11i | 1.371 (4) |
C2—C3 | 1.376 (3) | C12—H12 | 0.9300 |
C3—C4ii | 1.376 (3) | ||
N1—Cu1—N1i | 174.71 (9) | F2—C4—C3ii | 118.40 (17) |
N1—Cu1—O1 | 91.84 (6) | C2—C4—C3ii | 121.81 (17) |
N1i—Cu1—O1 | 85.16 (6) | N1—C5—C6 | 122.6 (2) |
N1—Cu1—O1i | 85.17 (6) | N1—C5—H5 | 118.7 |
N1i—Cu1—O1i | 91.84 (6) | C6—C5—H5 | 118.7 |
O1—Cu1—O1i | 111.11 (8) | C7—C6—C5 | 119.2 (2) |
N1—Cu1—N2 | 92.64 (4) | C7—C6—H6 | 120.4 |
N1i—Cu1—N2 | 92.64 (4) | C5—C6—H6 | 120.4 |
O1—Cu1—N2 | 124.45 (4) | C6—C7—C8 | 119.0 (2) |
O1i—Cu1—N2 | 124.44 (4) | C6—C7—H7 | 120.5 |
C1—O1—Cu1 | 116.73 (12) | C8—C7—H7 | 120.5 |
C9—N1—C5 | 117.60 (18) | C7—C8—C9 | 119.2 (2) |
C9—N1—Cu1 | 119.83 (14) | C7—C8—H8 | 120.4 |
C5—N1—Cu1 | 121.40 (14) | C9—C8—H8 | 120.4 |
C10—N2—C10i | 118.4 (2) | N1—C9—C8 | 122.4 (2) |
C10—N2—Cu1 | 120.81 (12) | N1—C9—H9 | 118.8 |
C10i—N2—Cu1 | 120.81 (12) | C8—C9—H9 | 118.8 |
O2—C1—O1 | 127.60 (17) | N2—C10—C11 | 122.4 (2) |
O2—C1—C2 | 118.69 (17) | N2—C10—H10 | 118.8 |
O1—C1—C2 | 113.70 (17) | C11—C10—H10 | 118.8 |
C4—C2—C3 | 116.07 (16) | C12—C11—C10 | 118.8 (3) |
C4—C2—C1 | 121.48 (17) | C12—C11—H11 | 120.6 |
C3—C2—C1 | 122.45 (16) | C10—C11—H11 | 120.6 |
F1—C3—C2 | 119.69 (16) | C11—C12—C11i | 119.3 (3) |
F1—C3—C4ii | 118.18 (17) | C11—C12—H12 | 120.4 |
C2—C3—C4ii | 122.12 (17) | C11i—C12—H12 | 120.4 |
F2—C4—C2 | 119.78 (17) | ||
N1—Cu1—O1—C1 | 98.39 (14) | O2—C1—C2—C3 | −120.1 (2) |
N1i—Cu1—O1—C1 | −85.98 (14) | O1—C1—C2—C3 | 61.3 (2) |
O1i—Cu1—O1—C1 | −176.08 (15) | C4—C2—C3—F1 | −178.79 (17) |
N2—Cu1—O1—C1 | 3.92 (15) | C1—C2—C3—F1 | 1.7 (3) |
O1—Cu1—N1—C9 | −174.91 (15) | C4—C2—C3—C4ii | −0.2 (3) |
O1i—Cu1—N1—C9 | 74.06 (15) | C1—C2—C3—C4ii | −179.68 (18) |
N2—Cu1—N1—C9 | −50.30 (15) | C3—C2—C4—F2 | −178.63 (18) |
O1—Cu1—N1—C5 | 17.73 (16) | C1—C2—C4—F2 | 0.9 (3) |
O1i—Cu1—N1—C5 | −93.30 (16) | C3—C2—C4—C3ii | 0.2 (3) |
N2—Cu1—N1—C5 | 142.34 (15) | C1—C2—C4—C3ii | 179.68 (18) |
N1—Cu1—N2—C10 | −49.29 (11) | C9—N1—C5—C6 | −1.2 (3) |
N1i—Cu1—N2—C10 | 130.71 (11) | Cu1—N1—C5—C6 | 166.42 (18) |
O1—Cu1—N2—C10 | 44.76 (11) | N1—C5—C6—C7 | 0.5 (4) |
O1i—Cu1—N2—C10 | −135.25 (11) | C5—C6—C7—C8 | 1.0 (4) |
N1—Cu1—N2—C10i | 130.71 (11) | C6—C7—C8—C9 | −1.7 (4) |
N1i—Cu1—N2—C10i | −49.29 (11) | C5—N1—C9—C8 | 0.5 (3) |
O1—Cu1—N2—C10i | −135.24 (11) | Cu1—N1—C9—C8 | −167.33 (18) |
O1i—Cu1—N2—C10i | 44.76 (11) | C7—C8—C9—N1 | 0.9 (4) |
Cu1—O1—C1—O2 | −6.9 (3) | C10i—N2—C10—C11 | −0.36 (16) |
Cu1—O1—C1—C2 | 171.55 (12) | Cu1—N2—C10—C11 | 179.65 (16) |
O2—C1—C2—C4 | 60.4 (3) | N2—C10—C11—C12 | 0.7 (3) |
O1—C1—C2—C4 | −118.2 (2) | C10—C11—C12—C11i | −0.33 (15) |
Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+3/2, −y+3/2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C8F4O4)(C5H5N)3] |
Mr | 536.92 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 273 |
a, b, c (Å) | 15.3579 (8), 8.7652 (5), 16.6050 (9) |
β (°) | 100.241 (3) |
V (Å3) | 2199.7 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.06 |
Crystal size (mm) | 0.15 × 0.10 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.857, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10049, 1950, 1857 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.071, 1.09 |
No. of reflections | 1950 |
No. of parameters | 160 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.32 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Cu1—N1 | 2.0236 (16) | Cu1—N2 | 2.073 (2) |
Cu1—O1 | 2.0609 (12) | ||
N1—Cu1—N1i | 174.71 (9) | O1—Cu1—O1i | 111.11 (8) |
N1—Cu1—O1 | 91.84 (6) | N1—Cu1—N2 | 92.64 (4) |
N1—Cu1—O1i | 85.17 (6) | O1—Cu1—N2 | 124.45 (4) |
Symmetry code: (i) −x+2, y, −z+1/2. |
Acknowledgements
This work was supported by the Center for Analysis and Testing of Jiangnan University and the Research Institute of Elemento–Organic Chemistry of Taishan College.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baeg, J. Y. & Lee, S. W. (2003). Inorg. Chem. Commun. 6, 313–316. Web of Science CSD CrossRef CAS Google Scholar
Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488. Web of Science CSD CrossRef CAS Google Scholar
Bastin, L., Bárcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E. & Chen, B. (2008). J. Phys. Chem. C, 112, 1575–1581. Web of Science CrossRef CAS Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA. Google Scholar
Cheng, J. K., Yin, P. X., Li, Z. J., Qin, Y. Y. & Yao, Y. G. (2007). Inorg. Chem. Commun. 10, 808–810. Web of Science CSD CrossRef CAS Google Scholar
Eddaoudi, M., Li, H. L. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391–1397. Web of Science CrossRef CAS Google Scholar
Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. (2008). J. Am. Chem. Soc. 130, 3246–3247. Web of Science CrossRef PubMed CAS Google Scholar
Reineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590–2594. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423–432. Web of Science CSD CrossRef CAS Google Scholar
Yuan, J. X., Xiao, H. P. & Hu, M. L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 224–226. CAS Google Scholar
Zhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291–4295. Web of Science CrossRef PubMed CAS Google Scholar
Zheng, C.-G., Hong, J.-Q., Zhang, J. & Wang, C. (2008). Acta Cryst. E64, m879. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, organically directed metal–terephthalates have attracted much attention due to their novel structures and desirable physical properties, and a lot of research work has been done on this type of complexes (Bastin et al., 2008; Eddaoudi et al., 2000; Gould et al., 2008). However, there are rare reports about halogen substituted terephthalate metal complexes till now. Some research work in computational study suggests that adsorption property in gas storage can be improved with electronegative atoms (e.g. halogen atoms) in the organic linkers or frameworks (Zhang et al., 2007). New topologies with favorable properties will be achieved by introducing some strong electronegative atoms to the phenyl ring.
The title compound consists of one-dimensional neutral zig-zag chains (Fig. 1 and Fig. 2). The tetrafluoroterephthalate ligand is coordinated to CuII ion in a bridging bis-monodentate fashion. In the trigonal bipyramidal coordination unit, two O atoms from two tetrafluoroterephthalate ligands and one N atom from a pyridine molecule form the equatorial plane. The axial positions are occupied by N atoms from two pyridine molecules with an N—Cu—N angle of 174.71 (9)° (Table 1). The Cu—N bond lengths lie in the range of 2.0236 (16) to 2.073 (2) Å and agree well with the reported values (Baruah et al., 2007; Cheng et al., 2007). The Cu—O bond lengths are 2.0609 (12) Å, which are comparable with the reported values in the similar complexes (Baeg & Lee, 2003; Stephenson & Hardie, 2006; Yuan et al., 2004). In the aromatic ring systems, the values of bond lengths and angles coincide with those previously reported (Zheng et al., 2008).