metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tris­­(pyridine-κN)copper(II)]-μ-tetra­fluoro­terephthalato-κ2O1:O4]

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
*Correspondence e-mail: cgzheng@126.com

(Received 14 June 2008; accepted 23 June 2008; online 28 June 2008)

In the title compound, [Cu(C8F4O4)(C5H5N)3]n, the CuII atom, lying on a twofold rotation axis, is five-coordinated by two O atoms from two tetra­fluoro­terephthalate ligands and three N atoms from three pyridine ligands in a distorted trigonal-bipyramidal geometry. Adjacent CuII atoms are connected via the bridging tetra­fluoro­terephthalate ligands into a one-dimensional chain running along the [101] direction.

Related literature

For related literature, see: Baeg & Lee (2003[Baeg, J. Y. & Lee, S. W. (2003). Inorg. Chem. Commun. 6, 313-316.]); Baruah et al. (2007[Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479-4488.]); Bastin et al. (2008[Bastin, L., Bárcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E. & Chen, B. (2008). J. Phys. Chem. C, 112, 1575-1581.]); Cheng et al. (2007[Cheng, J. K., Yin, P. X., Li, Z. J., Qin, Y. Y. & Yao, Y. G. (2007). Inorg. Chem. Commun. 10, 808-810.]); Eddaoudi et al. (2000[Eddaoudi, M., Li, H. L. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391-1397.]); Gould et al. (2008[Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. (2008). J. Am. Chem. Soc. 130, 3246-3247.]); Reineke et al. (1999[Reineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590-2594.]); Stephenson & Hardie (2006[Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423-432.]); Yuan et al. (2004[Yuan, J. X., Xiao, H. P. & Hu, M. L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 224-226.]); Zhang et al. (2007[Zhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291-4295.]); Zheng et al. (2008[Zheng, C.-G., Hong, J.-Q., Zhang, J. & Wang, C. (2008). Acta Cryst. E64, m879.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8F4O4)(C5H5N)3]

  • Mr = 536.92

  • Monoclinic, C 2/c

  • a = 15.3579 (8) Å

  • b = 8.7652 (5) Å

  • c = 16.6050 (9) Å

  • β = 100.241 (3)°

  • V = 2199.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 273 (2) K

  • 0.15 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.857, Tmax = 0.939

  • 10049 measured reflections

  • 1950 independent reflections

  • 1857 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.071

  • S = 1.09

  • 1950 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.0236 (16)
Cu1—O1 2.0609 (12)
Cu1—N2 2.073 (2)
N1—Cu1—N1i 174.71 (9)
N1—Cu1—O1 91.84 (6)
N1—Cu1—O1i 85.17 (6)
O1—Cu1—O1i 111.11 (8)
N1—Cu1—N2 92.64 (4)
O1—Cu1—N2 124.45 (4)
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, organically directed metal–terephthalates have attracted much attention due to their novel structures and desirable physical properties, and a lot of research work has been done on this type of complexes (Bastin et al., 2008; Eddaoudi et al., 2000; Gould et al., 2008). However, there are rare reports about halogen substituted terephthalate metal complexes till now. Some research work in computational study suggests that adsorption property in gas storage can be improved with electronegative atoms (e.g. halogen atoms) in the organic linkers or frameworks (Zhang et al., 2007). New topologies with favorable properties will be achieved by introducing some strong electronegative atoms to the phenyl ring.

The title compound consists of one-dimensional neutral zig-zag chains (Fig. 1 and Fig. 2). The tetrafluoroterephthalate ligand is coordinated to CuII ion in a bridging bis-monodentate fashion. In the trigonal bipyramidal coordination unit, two O atoms from two tetrafluoroterephthalate ligands and one N atom from a pyridine molecule form the equatorial plane. The axial positions are occupied by N atoms from two pyridine molecules with an N—Cu—N angle of 174.71 (9)° (Table 1). The Cu—N bond lengths lie in the range of 2.0236 (16) to 2.073 (2) Å and agree well with the reported values (Baruah et al., 2007; Cheng et al., 2007). The Cu—O bond lengths are 2.0609 (12) Å, which are comparable with the reported values in the similar complexes (Baeg & Lee, 2003; Stephenson & Hardie, 2006; Yuan et al., 2004). In the aromatic ring systems, the values of bond lengths and angles coincide with those previously reported (Zheng et al., 2008).

Related literature top

For related literature, see: Baeg & Lee (2003); Baruah et al. (2007); Bastin et al. (2008); Cheng et al. (2007); Eddaoudi et al. (2000); Gould et al. (2008); Reineke et al. (1999); Stephenson & Hardie (2006); Yuan et al. (2004); Zhang et al. (2007); Zheng et al. (2008).

Experimental top

All the reagents and solvents employed were commercially available. Tetrafluoroterephthalic acid was purified by recrystallization. According to the literature procedure (Reineke et al., 1999), the title compound was synthesized by slow vapor diffusion at room temperature of pyridine (3 ml) into an N,N-dimethylformamide solution (2 ml) containing a mixture of tetrafluoroterephthalic acid (0.071 g, 0.30 mmol) and Cu(NO3)2.3H2O (0.036 g, 0.15 mmol) diluted with CH3OH (6 ml). After two weeks, blue block-shaped crystals were obtained (yield 55% based on Cu). Analysis, calculated for C23H15CuF4N3O4: C 51.45, H 2.82, N 7.82%; found: C 51.50, H 2.86, N 7.76%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the chain structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 2-x, y, 1/2-z.)
[Figure 2] Fig. 2. View of the unit cell of the title compound.
catena-Poly[[tris(pyridine-κN)copper(II)]- µ-tetrafluoroterephthalato-κ2O1:O4] top
Crystal data top
[Cu(C8F4O4)(C5H5N)3]F(000) = 1084
Mr = 536.92Dx = 1.621 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7406 reflections
a = 15.3579 (8) Åθ = 2.7–28.3°
b = 8.7652 (5) ŵ = 1.06 mm1
c = 16.6050 (9) ÅT = 273 K
β = 100.241 (3)°Block, blue
V = 2199.7 (2) Å30.15 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1950 independent reflections
Radiation source: fine-focus sealed tube1857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.857, Tmax = 0.939k = 1010
10049 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.076P)2 + 0.2195P], P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.29 e Å3
1950 reflectionsΔρmin = 0.32 e Å3
160 parameters
Crystal data top
[Cu(C8F4O4)(C5H5N)3]V = 2199.7 (2) Å3
Mr = 536.92Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.3579 (8) ŵ = 1.06 mm1
b = 8.7652 (5) ÅT = 273 K
c = 16.6050 (9) Å0.15 × 0.10 × 0.06 mm
β = 100.241 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1950 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1857 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.939Rint = 0.022
10049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
1950 reflectionsΔρmin = 0.32 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.48258 (3)0.25000.03297 (12)
F10.92606 (7)0.77593 (17)0.00333 (8)0.0623 (4)
F20.68438 (9)0.54002 (17)0.09264 (9)0.0671 (4)
O10.92455 (8)0.61557 (16)0.16170 (8)0.0455 (3)
O20.86509 (13)0.40923 (19)0.09534 (10)0.0696 (5)
N11.10527 (11)0.49323 (17)0.19221 (10)0.0389 (4)
N21.00000.2460 (2)0.25000.0373 (5)
C10.87159 (13)0.5462 (2)0.10665 (11)0.0426 (4)
C20.80884 (12)0.6517 (2)0.05110 (11)0.0380 (4)
C30.83842 (11)0.7617 (2)0.00333 (11)0.0405 (4)
C40.71868 (13)0.6428 (2)0.04644 (11)0.0421 (4)
C51.11090 (14)0.6002 (2)0.13562 (13)0.0497 (5)
H51.06060.65620.11450.060*
C61.18819 (17)0.6303 (3)0.10757 (16)0.0629 (6)
H61.18990.70580.06850.076*
C71.26229 (16)0.5481 (3)0.13773 (16)0.0648 (7)
H71.31540.56780.12020.078*
C81.25719 (14)0.4362 (3)0.19412 (16)0.0627 (6)
H81.30650.37700.21440.075*
C91.17809 (13)0.4123 (3)0.22054 (13)0.0497 (5)
H91.17530.33710.25950.060*
C101.00346 (13)0.1681 (2)0.18168 (13)0.0462 (5)
H101.00560.22180.13370.055*
C111.00405 (16)0.0110 (3)0.1796 (2)0.0640 (7)
H111.00710.04050.13120.077*
C121.00000.0680 (4)0.25000.0727 (11)
H121.00000.17410.25000.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03026 (18)0.03081 (18)0.03662 (19)0.0000.00260 (12)0.000
F10.0316 (6)0.0927 (10)0.0611 (8)0.0037 (6)0.0038 (5)0.0250 (7)
F20.0513 (7)0.0780 (9)0.0705 (9)0.0032 (7)0.0064 (6)0.0393 (7)
O10.0377 (7)0.0536 (8)0.0402 (7)0.0054 (6)0.0064 (6)0.0110 (6)
O20.0893 (12)0.0491 (10)0.0593 (10)0.0198 (8)0.0170 (9)0.0028 (7)
N10.0353 (8)0.0404 (8)0.0402 (9)0.0013 (6)0.0049 (7)0.0037 (6)
N20.0348 (10)0.0303 (10)0.0452 (12)0.0000.0033 (9)0.000
C10.0415 (10)0.0502 (12)0.0338 (10)0.0121 (9)0.0004 (8)0.0079 (8)
C20.0375 (9)0.0422 (10)0.0312 (9)0.0068 (7)0.0024 (7)0.0030 (7)
C30.0291 (8)0.0537 (11)0.0364 (9)0.0033 (8)0.0004 (7)0.0041 (8)
C40.0419 (10)0.0468 (11)0.0359 (9)0.0003 (8)0.0024 (8)0.0108 (8)
C50.0488 (11)0.0494 (12)0.0520 (12)0.0007 (9)0.0121 (9)0.0049 (9)
C60.0667 (15)0.0669 (15)0.0601 (14)0.0140 (12)0.0245 (12)0.0020 (11)
C70.0447 (12)0.0851 (17)0.0687 (16)0.0165 (12)0.0215 (11)0.0195 (14)
C80.0354 (11)0.0820 (17)0.0692 (15)0.0034 (11)0.0052 (10)0.0112 (14)
C90.0380 (10)0.0579 (13)0.0512 (12)0.0037 (9)0.0025 (9)0.0002 (10)
C100.0416 (10)0.0398 (10)0.0560 (12)0.0010 (8)0.0053 (9)0.0104 (9)
C110.0498 (13)0.0455 (13)0.094 (2)0.0042 (9)0.0057 (13)0.0265 (12)
C120.0525 (19)0.0297 (15)0.132 (4)0.0000.007 (2)0.000
Geometric parameters (Å, º) top
Cu1—N12.0236 (16)C4—C3ii1.376 (3)
Cu1—N1i2.0236 (16)C5—C61.376 (3)
Cu1—O12.0609 (12)C5—H50.9300
Cu1—O1i2.0609 (12)C6—C71.365 (4)
Cu1—N22.073 (2)C6—H60.9300
F1—C31.352 (2)C7—C81.368 (4)
F2—C41.350 (2)C7—H70.9300
O1—C11.266 (2)C8—C91.379 (3)
O2—C11.216 (3)C8—H80.9300
N1—C91.337 (3)C9—H90.9300
N1—C51.341 (3)C10—C111.377 (3)
N2—C101.333 (2)C10—H100.9300
N2—C10i1.333 (2)C11—C121.370 (4)
C1—C21.523 (2)C11—H110.9300
C2—C41.375 (3)C12—C11i1.371 (4)
C2—C31.376 (3)C12—H120.9300
C3—C4ii1.376 (3)
N1—Cu1—N1i174.71 (9)F2—C4—C3ii118.40 (17)
N1—Cu1—O191.84 (6)C2—C4—C3ii121.81 (17)
N1i—Cu1—O185.16 (6)N1—C5—C6122.6 (2)
N1—Cu1—O1i85.17 (6)N1—C5—H5118.7
N1i—Cu1—O1i91.84 (6)C6—C5—H5118.7
O1—Cu1—O1i111.11 (8)C7—C6—C5119.2 (2)
N1—Cu1—N292.64 (4)C7—C6—H6120.4
N1i—Cu1—N292.64 (4)C5—C6—H6120.4
O1—Cu1—N2124.45 (4)C6—C7—C8119.0 (2)
O1i—Cu1—N2124.44 (4)C6—C7—H7120.5
C1—O1—Cu1116.73 (12)C8—C7—H7120.5
C9—N1—C5117.60 (18)C7—C8—C9119.2 (2)
C9—N1—Cu1119.83 (14)C7—C8—H8120.4
C5—N1—Cu1121.40 (14)C9—C8—H8120.4
C10—N2—C10i118.4 (2)N1—C9—C8122.4 (2)
C10—N2—Cu1120.81 (12)N1—C9—H9118.8
C10i—N2—Cu1120.81 (12)C8—C9—H9118.8
O2—C1—O1127.60 (17)N2—C10—C11122.4 (2)
O2—C1—C2118.69 (17)N2—C10—H10118.8
O1—C1—C2113.70 (17)C11—C10—H10118.8
C4—C2—C3116.07 (16)C12—C11—C10118.8 (3)
C4—C2—C1121.48 (17)C12—C11—H11120.6
C3—C2—C1122.45 (16)C10—C11—H11120.6
F1—C3—C2119.69 (16)C11—C12—C11i119.3 (3)
F1—C3—C4ii118.18 (17)C11—C12—H12120.4
C2—C3—C4ii122.12 (17)C11i—C12—H12120.4
F2—C4—C2119.78 (17)
N1—Cu1—O1—C198.39 (14)O2—C1—C2—C3120.1 (2)
N1i—Cu1—O1—C185.98 (14)O1—C1—C2—C361.3 (2)
O1i—Cu1—O1—C1176.08 (15)C4—C2—C3—F1178.79 (17)
N2—Cu1—O1—C13.92 (15)C1—C2—C3—F11.7 (3)
O1—Cu1—N1—C9174.91 (15)C4—C2—C3—C4ii0.2 (3)
O1i—Cu1—N1—C974.06 (15)C1—C2—C3—C4ii179.68 (18)
N2—Cu1—N1—C950.30 (15)C3—C2—C4—F2178.63 (18)
O1—Cu1—N1—C517.73 (16)C1—C2—C4—F20.9 (3)
O1i—Cu1—N1—C593.30 (16)C3—C2—C4—C3ii0.2 (3)
N2—Cu1—N1—C5142.34 (15)C1—C2—C4—C3ii179.68 (18)
N1—Cu1—N2—C1049.29 (11)C9—N1—C5—C61.2 (3)
N1i—Cu1—N2—C10130.71 (11)Cu1—N1—C5—C6166.42 (18)
O1—Cu1—N2—C1044.76 (11)N1—C5—C6—C70.5 (4)
O1i—Cu1—N2—C10135.25 (11)C5—C6—C7—C81.0 (4)
N1—Cu1—N2—C10i130.71 (11)C6—C7—C8—C91.7 (4)
N1i—Cu1—N2—C10i49.29 (11)C5—N1—C9—C80.5 (3)
O1—Cu1—N2—C10i135.24 (11)Cu1—N1—C9—C8167.33 (18)
O1i—Cu1—N2—C10i44.76 (11)C7—C8—C9—N10.9 (4)
Cu1—O1—C1—O26.9 (3)C10i—N2—C10—C110.36 (16)
Cu1—O1—C1—C2171.55 (12)Cu1—N2—C10—C11179.65 (16)
O2—C1—C2—C460.4 (3)N2—C10—C11—C120.7 (3)
O1—C1—C2—C4118.2 (2)C10—C11—C12—C11i0.33 (15)
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+3/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C8F4O4)(C5H5N)3]
Mr536.92
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)15.3579 (8), 8.7652 (5), 16.6050 (9)
β (°) 100.241 (3)
V3)2199.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.15 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
10049, 1950, 1857
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.071, 1.09
No. of reflections1950
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—N12.0236 (16)Cu1—N22.073 (2)
Cu1—O12.0609 (12)
N1—Cu1—N1i174.71 (9)O1—Cu1—O1i111.11 (8)
N1—Cu1—O191.84 (6)N1—Cu1—N292.64 (4)
N1—Cu1—O1i85.17 (6)O1—Cu1—N2124.45 (4)
Symmetry code: (i) x+2, y, z+1/2.
 

Acknowledgements

This work was supported by the Center for Analysis and Testing of Jiangnan University and the Research Institute of Elemento–Organic Chemistry of Taishan College.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaeg, J. Y. & Lee, S. W. (2003). Inorg. Chem. Commun. 6, 313–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488.  Web of Science CSD CrossRef CAS Google Scholar
First citationBastin, L., Bárcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E. & Chen, B. (2008). J. Phys. Chem. C, 112, 1575–1581.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J. K., Yin, P. X., Li, Z. J., Qin, Y. Y. & Yao, Y. G. (2007). Inorg. Chem. Commun. 10, 808–810.  Web of Science CSD CrossRef CAS Google Scholar
First citationEddaoudi, M., Li, H. L. & Yaghi, O. M. (2000). J. Am. Chem. Soc. 122, 1391–1397.  Web of Science CrossRef CAS Google Scholar
First citationGould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. (2008). J. Am. Chem. Soc. 130, 3246–3247.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReineke, T. M., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed. 38, 2590–2594.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des. 6, 423–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, J. X., Xiao, H. P. & Hu, M. L. (2004). Z. Kristallogr. New Cryst. Struct. 219, 224–226.  CAS Google Scholar
First citationZhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291–4295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, C.-G., Hong, J.-Q., Zhang, J. & Wang, C. (2008). Acta Cryst. E64, m879.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds