metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′,6,6′-Tetra­chloro-2,2′-[(spiro­[4.4]nonane-1,6-di­yl)bis­­(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}nickel(II)

aInstitute of Homogeneous Catalysis, Department of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: scuzhouxg@163.com

(Received 28 March 2008; accepted 8 May 2008; online 13 June 2008)

The title compound, [Ni(C23H20Cl4N2O2)], has an NiII ion in a square-planar coordination formed by two imine N and two phenolato O atoms.

Related literature

For related literature, see: Gaetani Manfredotti et al. (1983[Gaetani Manfredotti, A. & Guastini, C. (1983). Acta Cryst. C39, 863-865.]), de Castro et al. (2001[Castro, B. de, Freire, C., Duarte, M. T., Minas da Piedade, M. F. & Santos, I. C. (2001). Acta Cryst. C57, 370-372.]); Lutz (2003[Lutz, M. (2003). Acta Cryst. E59, m950-m952.]); Hoshina et al. (2000[Hoshina, G., Tsuchimoto, M. & Ohba, S. (2000). Acta Cryst. C56, e122.]); Gosden et al. (1978[Gosden, C., Healy, K. P. & Pletcher, D. (1978). J. Chem. Soc. Dalton Trans. pp. 972-976.], 1981[Gosden, C., Kerr, J. B., Pletcher, D. & Rosas, R. (1981). J. Electroanal. Chem. Interfac. Electrochem. 117, 101-107.]); Healy & Pletcher (1980[Healy, K. P. & Pletcher, D. (1980). J. Organomet. Chem. 186, 401-409.]); Dahm & Peters (1996[Dahm, C. E. & Peters, D. G. (1996). J. Electroanal. Chem. Interfac. Electrochem, 406, 119-121.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C23H20Cl4N2O2)]

  • Mr = 556.92

  • Monoclinic, P 21 /n

  • a = 13.344 (2) Å

  • b = 12.073 (2) Å

  • c = 14.081 (2) Å

  • β = 97.181 (3)°

  • V = 2250.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 294 (2) K

  • 0.22 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.761, Tmax = 1.000 (expected range = 0.646–0.849)

  • 20414 measured reflections

  • 5196 independent reflections

  • 3731 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.01

  • 5196 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nickel(II) complexes with N2O2 Schiff base ligands derived from salicylaldehyde have long been used as homogenous catalysts (Gosden et al., 1978, 1981; Healy & Pletcher, 1980). More recently, the preparation of metal-salen based modified electrodes by oxidative electropolymerization of the metal complexes prompted their use in heterogenous electrocatalysis (Dahm & Peters, 1996). Work in our laboratory has attempted to introduce spiro[4.4]nonane-1,6-diamine as backbone into the salen system and investigate its coordination feature.

The crystal structure of the title compound 1 is shown in Fig. 1, while bond lengths and angles are listed in the supplementary material. As shown in Fig.1, the mononuclear NiII ion is tetra-coordinated, showing a nearly perfectly square-planar coordination mode. The planes Ni1—N1—C10—C11—C12—O1 and Ni1—Ni2—C17—C18—C19—O2 are not coplanar due to the steric pressure of the spirocyclic ligand.

The O—Ni—O, N—Ni—N and N—Ni—O angles correspond very well with the familiar Ni-salen complexes based on 1,2-ethanediamine (Gaetani Manfredotti et al. 1983, Lutz, 2003), 1,2-cyclohexanediamine (Castro et al. 2001), and 1,2- diphenyl-1,2-ethanediamine (Hoshina et al. 2000). de Castro et al. found that the coordination geometry usually is tetrahedrally distorted the more the substituents in the imine bridge are bulkier or if the substitution is asymmetric. Here we attribute the intensive distortion to the spiro frame which reinforces the asymmetry.

A comparison with the three analogous nickel complexes above indicates that, in the present compound, both the Ni—O bonding distances [1.848 (2) / 1.846 (2), respectively] are in good agreement with those observed in similar Schiff base Ni complexes whereas the Ni—N bonding distances [1.892 (2) / 1.884 (2) Å, respectively] are slightly longer [reported values range from 1.843 (2) to 1.855 (2) Å].

Related literature top

For related literature, see: Gaetani Manfredotti et al. (1983), de Castro et al. (2001); Lutz (2003); Hoshina et al. (2000); Gosden et al. (1978, 1981); Healy & Pletcher (1980); Dahm & Peters (1996).

Experimental top

The title complex, [N,N'-Bis(3,5-dichloro-salicylidene)- spiro[4.4]nonane-1,6-diaminato]-nickel(II), was prepared by the reaction of a hot methanolic solution (30 mL) of nickel(II) acetate tetrahydrate (0.249 g, 1 mmol) with the Schiff base ligand N,N'-Bis(3,5-dichloro-salicylidene)-spiro[4.4]nonane-1,6-diamine (0.500 g, 1 mmol). The resulting green precipitate was collected by filtration and washed with methanol and ether (yield 38%). Dark green crystals of 1 were grown by slow diffusion of ether into a solution of 1 in dichloromethane.

Refinement top

All hydrogen atoms of the complex were positioned geometrically and refined using a riding model, with C—H = 0.93 Å (aromatic) and 0.98 Å (methylene) with Uiso(H) =1.2Ueq (C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of complex [Ni(C23H20Cl4N2O2)], with displacement ellipsoids drawn at the 30% probability level.
{4,4',6,6'-Tetrachloro-2,2'-[(spiro[4.4]nonane-1,6- diyl)bis(nitrilomethylidyne)]diphenolato-κ4O,N,N',O'}nickel(II) top
Crystal data top
[Ni(C23H20Cl4N2O2)]F(000) = 1136
Mr = 556.92Dx = 1.644 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10509 reflections
a = 13.344 (2) Åθ = 1–27.5°
b = 12.073 (2) ŵ = 1.36 mm1
c = 14.081 (2) ÅT = 294 K
β = 97.181 (3)°Prism, black
V = 2250.6 (6) Å30.22 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5196 independent reflections
Radiation source: fine-focus sealed tube3731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.761, Tmax = 1.000k = 1515
20414 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
5196 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Ni(C23H20Cl4N2O2)]V = 2250.6 (6) Å3
Mr = 556.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.344 (2) ŵ = 1.36 mm1
b = 12.073 (2) ÅT = 294 K
c = 14.081 (2) Å0.22 × 0.20 × 0.12 mm
β = 97.181 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3731 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 1.000Rint = 0.055
20414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 0.55 e Å3
5196 reflectionsΔρmin = 0.40 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.42863 (2)0.43913 (3)0.65679 (2)0.02559 (11)
Cl10.10295 (6)0.32950 (8)0.53445 (7)0.0554 (2)
Cl20.05657 (6)0.63477 (9)0.75125 (8)0.0661 (3)
Cl30.41217 (6)0.10984 (6)0.47916 (6)0.0453 (2)
Cl40.78080 (7)0.18824 (7)0.37495 (7)0.0568 (2)
O10.29376 (14)0.39968 (17)0.63812 (14)0.0377 (5)
O20.43951 (13)0.32517 (15)0.57124 (13)0.0327 (4)
N10.41147 (15)0.52722 (18)0.76468 (15)0.0276 (5)
N20.55652 (15)0.49892 (17)0.64347 (15)0.0267 (5)
C10.49859 (19)0.5405 (2)0.84037 (18)0.0306 (6)
H1A0.47850.58920.89040.037*
C20.5314 (2)0.4293 (3)0.8853 (2)0.0416 (7)
H2A0.52360.37040.83820.050*
H2B0.49280.41100.93720.050*
C30.6429 (2)0.4480 (3)0.9227 (2)0.0441 (8)
H3A0.65050.49160.98100.053*
H3B0.67860.37840.93440.053*
C40.6798 (2)0.5111 (3)0.8402 (2)0.0410 (7)
H4A0.69440.46050.79020.049*
H4B0.74050.55260.86220.049*
C50.59263 (19)0.5905 (2)0.80250 (18)0.0285 (6)
C60.58053 (19)0.6042 (2)0.69372 (18)0.0274 (5)
H6A0.52290.65370.67670.033*
C70.6754 (2)0.6688 (2)0.6779 (2)0.0366 (6)
H7A0.66770.70450.61570.044*
H7B0.73430.62100.68330.044*
C80.6830 (2)0.7548 (3)0.7596 (2)0.0480 (8)
H8A0.65860.82640.73550.058*
H8B0.75250.76270.78860.058*
C90.6165 (2)0.7099 (3)0.8331 (2)0.0431 (7)
H9A0.65260.71240.89730.052*
H9B0.55490.75290.83170.052*
C100.32576 (19)0.5653 (2)0.78429 (19)0.0295 (6)
H10A0.32730.61230.83680.035*
C110.22883 (19)0.5419 (2)0.73250 (19)0.0302 (6)
C120.21902 (19)0.4569 (2)0.66395 (19)0.0304 (6)
C130.1189 (2)0.4320 (2)0.6213 (2)0.0367 (6)
C140.0362 (2)0.4869 (3)0.6479 (2)0.0421 (7)
H14A0.02850.46920.61930.051*
C150.0498 (2)0.5684 (3)0.7173 (2)0.0397 (7)
C160.1439 (2)0.5968 (2)0.7601 (2)0.0354 (6)
H16A0.15170.65170.80680.043*
C170.6168 (2)0.4638 (2)0.58462 (18)0.0290 (6)
H17A0.67170.50850.57570.035*
C180.6061 (2)0.3617 (2)0.53205 (18)0.0280 (6)
C190.51800 (19)0.2961 (2)0.53137 (18)0.0278 (5)
C200.5172 (2)0.1946 (2)0.4804 (2)0.0321 (6)
C210.5954 (2)0.1621 (2)0.4321 (2)0.0355 (6)
H21A0.59210.09550.39880.043*
C220.6801 (2)0.2305 (2)0.4335 (2)0.0359 (6)
C230.6860 (2)0.3287 (2)0.48250 (19)0.0324 (6)
H23A0.74280.37340.48290.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02081 (18)0.02942 (19)0.02673 (19)0.00060 (13)0.00379 (13)0.00226 (14)
Cl10.0407 (4)0.0607 (6)0.0629 (5)0.0066 (4)0.0008 (4)0.0221 (4)
Cl20.0264 (4)0.0838 (7)0.0887 (7)0.0125 (4)0.0095 (4)0.0225 (6)
Cl30.0416 (4)0.0319 (4)0.0620 (5)0.0045 (3)0.0044 (4)0.0038 (3)
Cl40.0631 (5)0.0467 (5)0.0688 (6)0.0084 (4)0.0402 (5)0.0077 (4)
O10.0227 (10)0.0430 (11)0.0477 (12)0.0003 (8)0.0057 (8)0.0123 (9)
O20.0251 (9)0.0325 (10)0.0416 (11)0.0006 (8)0.0077 (8)0.0089 (8)
N10.0216 (11)0.0342 (12)0.0274 (11)0.0005 (9)0.0044 (9)0.0002 (9)
N20.0244 (11)0.0294 (12)0.0262 (11)0.0014 (9)0.0030 (9)0.0002 (9)
C10.0239 (13)0.0420 (16)0.0258 (13)0.0021 (11)0.0023 (10)0.0030 (11)
C20.0359 (16)0.0485 (18)0.0393 (17)0.0031 (13)0.0006 (13)0.0122 (14)
C30.0333 (16)0.059 (2)0.0385 (17)0.0051 (14)0.0034 (13)0.0139 (15)
C40.0268 (15)0.0538 (19)0.0418 (17)0.0066 (13)0.0012 (12)0.0058 (15)
C50.0217 (12)0.0345 (15)0.0287 (14)0.0004 (10)0.0003 (10)0.0017 (11)
C60.0236 (13)0.0274 (13)0.0308 (14)0.0008 (10)0.0020 (10)0.0008 (11)
C70.0332 (15)0.0364 (16)0.0406 (16)0.0072 (12)0.0065 (12)0.0014 (13)
C80.0472 (19)0.0435 (18)0.054 (2)0.0134 (15)0.0088 (15)0.0082 (15)
C90.0445 (18)0.0451 (18)0.0392 (17)0.0112 (14)0.0030 (13)0.0129 (14)
C100.0271 (13)0.0315 (14)0.0306 (14)0.0006 (11)0.0059 (11)0.0010 (11)
C110.0232 (13)0.0360 (15)0.0323 (14)0.0008 (11)0.0067 (11)0.0031 (11)
C120.0239 (13)0.0332 (15)0.0350 (15)0.0011 (11)0.0069 (11)0.0024 (12)
C130.0312 (15)0.0387 (16)0.0393 (16)0.0040 (12)0.0007 (12)0.0018 (13)
C140.0224 (14)0.0531 (19)0.0500 (18)0.0021 (13)0.0015 (12)0.0004 (15)
C150.0233 (14)0.0472 (18)0.0493 (18)0.0057 (12)0.0077 (12)0.0011 (14)
C160.0306 (15)0.0394 (16)0.0368 (16)0.0069 (12)0.0067 (12)0.0010 (12)
C170.0269 (13)0.0313 (14)0.0292 (14)0.0031 (11)0.0055 (11)0.0014 (11)
C180.0301 (14)0.0283 (14)0.0259 (13)0.0054 (11)0.0043 (11)0.0020 (11)
C190.0284 (13)0.0278 (13)0.0275 (13)0.0039 (11)0.0042 (11)0.0019 (11)
C200.0324 (14)0.0295 (14)0.0339 (15)0.0015 (11)0.0017 (11)0.0028 (11)
C210.0465 (17)0.0272 (14)0.0338 (15)0.0060 (13)0.0093 (13)0.0000 (12)
C220.0398 (16)0.0356 (16)0.0348 (15)0.0108 (13)0.0146 (12)0.0024 (12)
C230.0325 (15)0.0343 (15)0.0321 (15)0.0014 (12)0.0109 (12)0.0052 (12)
Geometric parameters (Å, º) top
Ni1—O21.8463 (18)C6—H6A0.9800
Ni1—O11.8484 (19)C7—C81.544 (4)
Ni1—N21.884 (2)C7—H7A0.9700
Ni1—N11.892 (2)C7—H7B0.9700
Cl1—C131.734 (3)C8—C91.544 (4)
Cl2—C151.747 (3)C8—H8A0.9700
Cl3—C201.733 (3)C8—H8B0.9700
Cl4—C221.739 (3)C9—H9A0.9700
O1—C121.302 (3)C9—H9B0.9700
O2—C191.297 (3)C10—C111.432 (4)
N1—C101.294 (3)C10—H10A0.9300
N1—C11.484 (3)C11—C121.403 (4)
N2—C171.296 (3)C11—C161.409 (4)
N2—C61.470 (3)C12—C131.426 (4)
C1—C21.525 (4)C13—C141.379 (4)
C1—C51.546 (4)C14—C151.383 (4)
C1—H1A0.9800C14—H14A0.9300
C2—C31.532 (4)C15—C161.366 (4)
C2—H2A0.9700C16—H16A0.9300
C2—H2B0.9700C17—C181.436 (4)
C3—C41.522 (4)C17—H17A0.9300
C3—H3A0.9700C18—C231.403 (4)
C3—H3B0.9700C18—C191.416 (4)
C4—C51.548 (4)C19—C201.420 (4)
C4—H4A0.9700C20—C211.372 (4)
C4—H4B0.9700C21—C221.397 (4)
C5—C91.527 (4)C21—H21A0.9300
C5—C61.529 (4)C22—C231.368 (4)
C6—C71.526 (4)C23—H23A0.9300
O2—Ni1—O182.52 (8)H7A—C7—H7B109.2
O2—Ni1—N294.27 (8)C7—C8—C9105.9 (2)
O1—Ni1—N2164.28 (9)C7—C8—H8A110.6
O2—Ni1—N1165.98 (9)C9—C8—H8A110.6
O1—Ni1—N192.62 (9)C7—C8—H8B110.6
N2—Ni1—N193.82 (9)C9—C8—H8B110.6
C12—O1—Ni1126.14 (18)H8A—C8—H8B108.7
C19—O2—Ni1128.15 (17)C5—C9—C8105.0 (2)
C10—N1—C1116.2 (2)C5—C9—H9A110.7
C10—N1—Ni1124.76 (18)C8—C9—H9A110.7
C1—N1—Ni1118.34 (16)C5—C9—H9B110.7
C17—N2—C6118.3 (2)C8—C9—H9B110.7
C17—N2—Ni1125.51 (19)H9A—C9—H9B108.8
C6—N2—Ni1115.40 (15)N1—C10—C11126.0 (3)
N1—C1—C2111.2 (2)N1—C10—H10A117.0
N1—C1—C5113.0 (2)C11—C10—H10A117.0
C2—C1—C5106.5 (2)C12—C11—C16121.6 (2)
N1—C1—H1A108.7C12—C11—C10119.7 (2)
C2—C1—H1A108.7C16—C11—C10118.2 (3)
C5—C1—H1A108.7O1—C12—C11124.8 (2)
C1—C2—C3103.2 (2)O1—C12—C13118.7 (2)
C1—C2—H2A111.1C11—C12—C13116.5 (2)
C3—C2—H2A111.1C14—C13—C12121.6 (3)
C1—C2—H2B111.1C14—C13—Cl1120.2 (2)
C3—C2—H2B111.1C12—C13—Cl1118.3 (2)
H2A—C2—H2B109.1C13—C14—C15119.7 (3)
C4—C3—C2101.8 (2)C13—C14—H14A120.2
C4—C3—H3A111.4C15—C14—H14A120.2
C2—C3—H3A111.4C16—C15—C14121.5 (3)
C4—C3—H3B111.4C16—C15—Cl2119.8 (2)
C2—C3—H3B111.4C14—C15—Cl2118.7 (2)
H3A—C3—H3B109.3C15—C16—C11119.1 (3)
C3—C4—C5105.7 (2)C15—C16—H16A120.4
C3—C4—H4A110.6C11—C16—H16A120.4
C5—C4—H4A110.6N2—C17—C18125.5 (2)
C3—C4—H4B110.6N2—C17—H17A117.3
C5—C4—H4B110.6C18—C17—H17A117.3
H4A—C4—H4B108.7C23—C18—C19121.3 (2)
C9—C5—C699.9 (2)C23—C18—C17117.9 (2)
C9—C5—C1114.9 (2)C19—C18—C17120.9 (2)
C6—C5—C1113.5 (2)O2—C19—C18124.0 (2)
C9—C5—C4111.5 (2)O2—C19—C20119.8 (2)
C6—C5—C4113.0 (2)C18—C19—C20116.1 (2)
C1—C5—C4104.4 (2)C21—C20—C19122.6 (3)
N2—C6—C7120.4 (2)C21—C20—Cl3119.4 (2)
N2—C6—C5112.2 (2)C19—C20—Cl3118.0 (2)
C7—C6—C5102.5 (2)C20—C21—C22119.2 (3)
N2—C6—H6A107.0C20—C21—H21A120.4
C7—C6—H6A107.0C22—C21—H21A120.4
C5—C6—H6A107.0C23—C22—C21121.0 (2)
C6—C7—C8102.3 (2)C23—C22—Cl4119.6 (2)
C6—C7—H7A111.3C21—C22—Cl4119.4 (2)
C8—C7—H7A111.3C22—C23—C18119.8 (3)
C6—C7—H7B111.3C22—C23—H23A120.1
C8—C7—H7B111.3C18—C23—H23A120.1
O2—Ni1—O1—C12167.0 (2)C6—C5—C9—C837.3 (3)
N2—Ni1—O1—C1287.9 (4)C1—C5—C9—C8159.1 (2)
N1—Ni1—O1—C1226.2 (2)C4—C5—C9—C882.4 (3)
O1—Ni1—O2—C19172.9 (2)C7—C8—C9—C512.0 (3)
N2—Ni1—O2—C198.3 (2)C1—N1—C10—C11165.9 (3)
N1—Ni1—O2—C19116.8 (4)Ni1—N1—C10—C114.6 (4)
O2—Ni1—N1—C1088.5 (4)N1—C10—C11—C1211.5 (4)
O1—Ni1—N1—C1019.3 (2)N1—C10—C11—C16175.7 (3)
N2—Ni1—N1—C10146.4 (2)Ni1—O1—C12—C1118.5 (4)
O2—Ni1—N1—C181.9 (4)Ni1—O1—C12—C13162.3 (2)
O1—Ni1—N1—C1151.08 (19)C16—C11—C12—O1177.0 (3)
N2—Ni1—N1—C143.26 (19)C10—C11—C12—O14.5 (4)
O2—Ni1—N2—C174.1 (2)C16—C11—C12—C132.2 (4)
O1—Ni1—N2—C1773.4 (4)C10—C11—C12—C13174.7 (2)
N1—Ni1—N2—C17172.7 (2)O1—C12—C13—C14177.7 (3)
O2—Ni1—N2—C6174.05 (17)C11—C12—C13—C141.5 (4)
O1—Ni1—N2—C696.6 (4)O1—C12—C13—Cl12.0 (4)
N1—Ni1—N2—C617.40 (18)C11—C12—C13—Cl1178.8 (2)
C10—N1—C1—C2109.6 (3)C12—C13—C14—C150.2 (5)
Ni1—N1—C1—C261.6 (3)Cl1—C13—C14—C15179.9 (2)
C10—N1—C1—C5130.8 (2)C13—C14—C15—C160.5 (5)
Ni1—N1—C1—C558.1 (3)C13—C14—C15—Cl2178.8 (2)
N1—C1—C2—C3154.6 (2)C14—C15—C16—C110.2 (5)
C5—C1—C2—C331.1 (3)Cl2—C15—C16—C11179.5 (2)
C1—C2—C3—C442.6 (3)C12—C11—C16—C151.6 (4)
C2—C3—C4—C538.5 (3)C10—C11—C16—C15174.2 (3)
N1—C1—C5—C9107.9 (3)C6—N2—C17—C18178.2 (2)
C2—C1—C5—C9129.7 (3)Ni1—N2—C17—C1812.2 (4)
N1—C1—C5—C66.2 (3)N2—C17—C18—C23170.7 (2)
C2—C1—C5—C6116.1 (3)N2—C17—C18—C198.5 (4)
N1—C1—C5—C4129.7 (2)Ni1—O2—C19—C1813.3 (4)
C2—C1—C5—C47.4 (3)Ni1—O2—C19—C20169.04 (18)
C3—C4—C5—C9105.1 (3)C23—C18—C19—O2176.0 (2)
C3—C4—C5—C6143.2 (2)C17—C18—C19—O24.8 (4)
C3—C4—C5—C119.4 (3)C23—C18—C19—C201.8 (4)
C17—N2—C6—C71.1 (4)C17—C18—C19—C20177.4 (2)
Ni1—N2—C6—C7171.80 (19)O2—C19—C20—C21176.2 (2)
C17—N2—C6—C5121.8 (2)C18—C19—C20—C211.7 (4)
Ni1—N2—C6—C567.5 (2)O2—C19—C20—Cl33.3 (3)
C9—C5—C6—N2179.9 (2)C18—C19—C20—Cl3178.82 (19)
C1—C5—C6—N257.2 (3)C19—C20—C21—C220.7 (4)
C4—C5—C6—N261.4 (3)Cl3—C20—C21—C22179.8 (2)
C9—C5—C6—C749.4 (3)C20—C21—C22—C230.2 (4)
C1—C5—C6—C7172.2 (2)C20—C21—C22—Cl4178.4 (2)
C4—C5—C6—C769.2 (3)C21—C22—C23—C180.1 (4)
N2—C6—C7—C8167.4 (2)Cl4—C22—C23—C18178.3 (2)
C5—C6—C7—C842.0 (3)C19—C18—C23—C221.0 (4)
C6—C7—C8—C918.2 (3)C17—C18—C23—C22178.3 (2)

Experimental details

Crystal data
Chemical formula[Ni(C23H20Cl4N2O2)]
Mr556.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)13.344 (2), 12.073 (2), 14.081 (2)
β (°) 97.181 (3)
V3)2250.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.22 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.761, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20414, 5196, 3731
Rint0.055
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.01
No. of reflections5196
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.40

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars 2005383–10-9, NSFC 20672075 and the Student Innovation Foundation of Sichuan University.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, B. de, Freire, C., Duarte, M. T., Minas da Piedade, M. F. & Santos, I. C. (2001). Acta Cryst. C57, 370–372.  CSD CrossRef IUCr Journals Google Scholar
First citationDahm, C. E. & Peters, D. G. (1996). J. Electroanal. Chem. Interfac. Electrochem, 406, 119–121.  CrossRef Google Scholar
First citationGaetani Manfredotti, A. & Guastini, C. (1983). Acta Cryst. C39, 863–865.  CSD CrossRef IUCr Journals Google Scholar
First citationGosden, C., Healy, K. P. & Pletcher, D. (1978). J. Chem. Soc. Dalton Trans. pp. 972–976.  CrossRef Web of Science Google Scholar
First citationGosden, C., Kerr, J. B., Pletcher, D. & Rosas, R. (1981). J. Electroanal. Chem. Interfac. Electrochem. 117, 101–107.  CrossRef CAS Google Scholar
First citationHealy, K. P. & Pletcher, D. (1980). J. Organomet. Chem. 186, 401–409.  Google Scholar
First citationHoshina, G., Tsuchimoto, M. & Ohba, S. (2000). Acta Cryst. C56, e122.  CSD CrossRef IUCr Journals Google Scholar
First citationLutz, M. (2003). Acta Cryst. E59, m950–m952.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds