organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(3-butyrylthio­ureido)benzoate

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com

(Received 4 June 2008; accepted 12 June 2008; online 28 June 2008)

The title compound, C14H18N2O3S, crystallizes in the thio­amide form with an intra­molecular N—H⋯O hydrogen bond associated with the thio­urea unit. With the benzoic acid and the butyrylthio­ureido units, the mol­ecule consists of two planar building blocks connected by the common NH function adjacent to the aromatic ring. The inter­planar angle is 33.38 (3)°. Mol­ecules are connected in chains parallel to [110] by classical hydrogen bonds of the N—H⋯O type from the other NH group to the benzoate C=O of a neighboring mol­ecule.

Related literature

For related literature, see: del Campo et al. (2002[Campo, R. del, Criado, J. J., Hermosa, M. R., Jimenez-Sanchez, A., Manzano, J. L., Mante, E., Rodriguez-Fernandez, E. & Sanz, F. (2002). J. Inorg. Biochem. 89, 74-82.]); D'hooghe et al. (2005[D'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227-232.]); Dušek (1985[Dušek, K. (1985). Adv. Polym. Sci. 78, 115-118.]); Huebner et al. (1953[Huebner, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schrooder, D. C., Troxell, H. A. & Scholz, C. R. (1953). J. Am. Chem. Soc. 75, 2274-2275.]); Rodriguez-Fernandez et al. (2005[Rodriguez-Fernandez, E., Manzano, J. L., Benito, J. J., Hermosa, R., Monte, E. & Criado, J. J. (2005). J. Inorg. Biochem. 99 , 1558-1572.]); Xu et al. (2004[Xu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217-1222.]); Zeng et al. (2003[Zeng, R. S., Zou, J. P., Zchen, S. J. & Shen, Q. (2003). Org. Lett. 61, 1657-1659.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O3S

  • Mr = 294.36

  • Triclinic, [P \overline 1]

  • a = 7.9817 (4) Å

  • b = 9.8843 (6) Å

  • c = 11.0759 (6) Å

  • α = 114.472 (6)°

  • β = 101.156 (4)°

  • γ = 102.277 (5)°

  • V = 737.15 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 (2) K

  • 0.28 × 0.18 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.944, Tmax = 1.000 (expected range = 0.918–0.973)

  • 15025 measured reflections

  • 4104 independent reflections

  • 3045 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.096

  • S = 0.96

  • 4104 reflections

  • 191 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H02⋯O1 0.82 (2) 1.92 (2) 2.653 (1) 148 (2)
N1—H01⋯O2i 0.79 (1) 2.20 (1) 2.957 (1) 160 (2)
C13—H13A⋯O1ii 0.99 2.58 3.363 (2) 136
C1—H1B⋯Siii 0.98 3.00 3.854 (2) 147
C13—H13B⋯Siv 0.99 2.96 3.577 (1) 122
C14—H14C⋯Sv 0.98 2.98 3.821 (2) 144
Symmetry codes: (i) x-1, y-1, z; (ii) -x+1, -y+2, -z+1; (iii) x-1, y-1, z-1; (iv) x+1, y+1, z; (v) -x+2, -y+2, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Epoxy resins have the combination of good thermal and dimensional stability, excellent chemical and corrosion resistance, high tensile strength and modulus, and ease of handling and processability, ensuring their wide application in the aerospace and electronic industries in the form of structural adhesives, advanced composite matrices, and packaging materials (Dušek, 1985). The properties of cured epoxy polymers largely depend on the nature of chemical structure of the starting resins and curing agents. The title compound (I) is a precursor in an attempt to synthesize imidazole derivatives and transition metal complexes as epoxy resin curing agents and accelerators. Substituted thioureas are an important class of compounds, precursors or intermediates towards the synthesis of a variety of heterocyclic systems such as imidazole-2-thiones (Zeng et al., 2003), 2-imino-1,3-thiazolines (D'hooghe et al., 2005), pyrimidine-2-thiones and (benzothiazolyl)-4-quinazolinones. Thioureas are also known to exhibit a wide range of biological activities including antiviral, antibacterial, antifungal, antitubercular, antithyroidal, herbicidal and insecticidal activities (Huebner et al., 1953) and as agrochemicals (Xu et al., 2004). Among thiourea derivatives, acylthioureas, with O and S as potential donor sites, have been found to display a remarkably rich coordination chemistry. Such coordination compounds of thiourea have been studied for various biological systems (Rodriguez-Fernandez et al., 2005). In recent years some attention has also been paid to the potential use of acylthioureas as highly selective reagents for the enrichment and separation of metal cations (del Campo et al.,2002).

The title compound crystallizes in the thioamide form with an intramolecular hydrogen bond N2—H02···O1. Bond lengths and angles (cf. Supplementary Material) may be regarded as normal. The molecule consists of two planar building blocks: the butyrylthioureido group (S, C1–5, O1, N1, N2) and the benzoic acid moiety (C6–14, N2, O2, O3). Mean deviations from planarity for these moieties are 0.12 and 0.13 Å, respectively, and the interplanar angle is 33.38 (3)°. Molecules are connected to give infinite chains parallel to [110] by classical hydrogen bonds N1—H01···O2. These are in turn connected to antiparallel chains by the weak hydrogen bonds C13—H13A···O1. Additionally, there are three C—H···S contacts that may be borderline weak H bonds (Table 1, Fig. 2).

Related literature top

For related literature, see: del Campo et al. (2002); D'hooghe et al. (2005); Dušek (1985); Huebner et al. (1953); Rodriguez-Fernandez et al. (2005); Xu et al. (2004); Zeng et al. (2003).

Experimental top

A mixture of ammonium thiocyanate (26 mmol) and butanoyl chloride (26 mmol) in anhydrous acetone (70 ml) was stirred for 35 min. Then p-aminobenzoic acid ethyl ester (26 mmol) was added dropwise and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured in acidified cold water. The resulting light green solid was filtered and washed with cold acetone.The product was recrystallized from ethanol as light greenish crystals (3.62 g, 91%), m.p. 412 K.

Refinement top

The NH H atoms were refined freely but with distance restraints (command SADI). Methyl H atoms were included on the basis of idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other hydrogen atoms were included using a riding model with C—H 0.95 (aromatic) or 0.99 (methylene) Å. U(H) values were fixed at 1.5Uiso(C) of the parent C atom for methyl H, 1.2Uiso(C) for other H.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in the crystal. Ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of I showing classical and "weak" H bonds as thick or thin dashed bonds respectively. The double chain pattern is apparent.
Ethyl 4-(3-butyrylthioureido)benzoate top
Crystal data top
C14H18N2O3SZ = 2
Mr = 294.36F(000) = 312
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Melting point: 412 K
a = 7.9817 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8843 (6) ÅCell parameters from 7295 reflections
c = 11.0759 (6) Åθ = 2.8–30.7°
α = 114.472 (6)°µ = 0.23 mm1
β = 101.156 (4)°T = 100 K
γ = 102.277 (5)°Pyramid, colourless
V = 737.15 (7) Å30.28 × 0.18 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
4104 independent reflections
Radiation source: Enhance (Mo) X-ray Source3045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.1057 pixels mm-1θmax = 30.8°, θmin = 2.8°
ω scansh = 1011
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1413
Tmin = 0.944, Tmax = 1.000l = 1515
15025 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
4104 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C14H18N2O3Sγ = 102.277 (5)°
Mr = 294.36V = 737.15 (7) Å3
Triclinic, P1Z = 2
a = 7.9817 (4) ÅMo Kα radiation
b = 9.8843 (6) ŵ = 0.23 mm1
c = 11.0759 (6) ÅT = 100 K
α = 114.472 (6)°0.28 × 0.18 × 0.12 mm
β = 101.156 (4)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3045 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 1.000Rint = 0.036
15025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.45 e Å3
4104 reflectionsΔρmin = 0.24 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 7.3219 (0.0010) x + 3.9334 (0.0038) y + 4.1423 (0.0037) z = 2.1058 (0.0010)

* -0.1410 (0.0006) S * -0.1556 (0.0012) C1 * -0.0747 (0.0014) C2 * 0.1521 (0.0012) C3 * 0.1191 (0.0012) C4 * -0.0053 (0.0010) C5 * 0.0111 (0.0008) O1 * 0.2033 (0.0010) N1 * -0.1089 (0.0009) N2

Rms deviation of fitted atoms = 0.1249

- 6.2227 (0.0013) x + 7.6804 (0.0015) y - 1.8402 (0.0041) z = 2.0195 (0.0017)

Angle to previous plane (with approximate e.s.d.) = 33.38 (0.03)

* -0.0510 (0.0011) C6 * -0.1492 (0.0011) C7 * -0.0777 (0.0011) C8 * 0.0751 (0.0012) C9 * 0.1972 (0.0012) C10 * 0.1468 (0.0011) C11 * 0.0732 (0.0011) C12 * 0.0367 (0.0013) C13 * -0.2621 (0.0011) C14 * 0.0788 (0.0009) O2 * 0.0421 (0.0010) O3 * -0.1099 (0.0009) N2

Rms deviation of fitted atoms = 0.1266

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.47787 (5)0.62325 (4)0.72720 (3)0.02040 (10)
O10.11708 (12)0.45529 (11)0.28568 (9)0.0208 (2)
O21.03683 (13)1.25923 (10)0.60929 (9)0.0217 (2)
O31.04639 (12)1.31498 (10)0.82958 (9)0.0200 (2)
N10.20683 (14)0.45249 (13)0.49337 (11)0.0164 (2)
H010.186 (2)0.3993 (17)0.5294 (16)0.020 (4)*
N20.38248 (15)0.68105 (13)0.51142 (11)0.0168 (2)
H020.318 (2)0.6327 (19)0.4292 (16)0.034 (5)*
C10.2318 (2)0.03015 (17)0.08970 (15)0.0334 (4)
H1A0.15120.08730.10610.050*
H1B0.29540.07870.01070.050*
H1C0.32000.03430.13960.050*
C20.1213 (2)0.14034 (17)0.14262 (14)0.0313 (3)
H2A0.03330.14420.09120.038*
H2B0.20270.19710.12380.038*
C30.02144 (18)0.22120 (15)0.29715 (13)0.0195 (3)
H3A0.11100.22450.34800.023*
H3B0.04970.15740.31620.023*
C40.10397 (16)0.38601 (15)0.35434 (13)0.0161 (3)
C50.35361 (16)0.58945 (14)0.57240 (12)0.0152 (2)
C60.52972 (17)0.81999 (14)0.56141 (13)0.0158 (2)
C70.60248 (17)0.84283 (15)0.46402 (13)0.0177 (3)
H70.55450.76590.36810.021*
C80.74473 (18)0.97773 (15)0.50722 (13)0.0174 (3)
H80.79320.99370.44050.021*
C90.81749 (17)1.09026 (14)0.64780 (13)0.0162 (3)
C100.74195 (17)1.06811 (14)0.74442 (13)0.0176 (3)
H100.78981.14530.84020.021*
C110.59726 (18)0.93406 (15)0.70161 (13)0.0183 (3)
H110.54480.92030.76750.022*
C120.97646 (17)1.22913 (14)0.69088 (13)0.0168 (3)
C131.20350 (18)1.45409 (16)0.88185 (14)0.0237 (3)
H13A1.16741.53520.86320.028*
H13B1.29421.42650.83500.028*
C141.28094 (19)1.51477 (17)1.03564 (14)0.0267 (3)
H14A1.18821.53691.08020.040*
H14B1.38361.61161.07510.040*
H14C1.32181.43561.05250.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.02247 (18)0.01856 (17)0.01304 (16)0.00118 (13)0.00170 (12)0.00807 (12)
O10.0212 (5)0.0233 (5)0.0159 (5)0.0035 (4)0.0012 (4)0.0114 (4)
O20.0249 (5)0.0201 (5)0.0190 (5)0.0014 (4)0.0087 (4)0.0103 (4)
O30.0195 (5)0.0196 (5)0.0147 (4)0.0025 (4)0.0005 (4)0.0091 (4)
N10.0176 (5)0.0163 (5)0.0118 (5)0.0002 (4)0.0020 (4)0.0072 (4)
N20.0179 (5)0.0166 (5)0.0114 (5)0.0007 (4)0.0007 (4)0.0069 (4)
C10.0376 (9)0.0212 (7)0.0205 (7)0.0011 (6)0.0044 (6)0.0010 (6)
C20.0431 (9)0.0214 (7)0.0159 (7)0.0027 (6)0.0031 (6)0.0059 (6)
C30.0197 (6)0.0180 (6)0.0138 (6)0.0018 (5)0.0023 (5)0.0046 (5)
C40.0147 (6)0.0193 (6)0.0126 (6)0.0058 (5)0.0036 (5)0.0062 (5)
C50.0153 (6)0.0146 (6)0.0138 (6)0.0040 (5)0.0046 (5)0.0055 (5)
C60.0153 (6)0.0149 (6)0.0166 (6)0.0032 (5)0.0030 (5)0.0085 (5)
C70.0218 (7)0.0169 (6)0.0128 (6)0.0053 (5)0.0041 (5)0.0066 (5)
C80.0220 (6)0.0178 (6)0.0155 (6)0.0063 (5)0.0071 (5)0.0102 (5)
C90.0174 (6)0.0152 (6)0.0169 (6)0.0043 (5)0.0045 (5)0.0093 (5)
C100.0215 (6)0.0159 (6)0.0132 (6)0.0043 (5)0.0040 (5)0.0065 (5)
C110.0215 (6)0.0188 (6)0.0157 (6)0.0050 (5)0.0073 (5)0.0093 (5)
C120.0186 (6)0.0165 (6)0.0170 (6)0.0063 (5)0.0048 (5)0.0096 (5)
C130.0192 (7)0.0222 (7)0.0232 (7)0.0037 (5)0.0011 (5)0.0135 (6)
C140.0227 (7)0.0281 (8)0.0198 (7)0.0003 (6)0.0025 (5)0.0086 (6)
Geometric parameters (Å, º) top
S—C51.6617 (13)C13—C141.4939 (18)
O1—C41.2207 (15)N1—H010.791 (13)
O2—C121.2114 (15)N2—H020.823 (15)
O3—C121.3336 (15)C1—H1A0.9800
O3—C131.4576 (15)C1—H1B0.9800
N1—C51.3850 (16)C1—H1C0.9800
N1—C41.3856 (16)C2—H2A0.9900
N2—C51.3443 (16)C2—H2B0.9900
N2—C61.4161 (16)C3—H3A0.9900
C1—C21.520 (2)C3—H3B0.9900
C2—C31.5071 (18)C7—H70.9500
C3—C41.5044 (17)C8—H80.9500
C6—C111.3929 (17)C10—H100.9500
C6—C71.3930 (17)C11—H110.9500
C7—C81.3833 (17)C13—H13A0.9900
C8—C91.3926 (17)C13—H13B0.9900
C9—C101.3944 (17)C14—H14A0.9800
C9—C121.4846 (17)C14—H14B0.9800
C10—C111.3896 (17)C14—H14C0.9800
C12—O3—C13116.02 (10)C2—C1—H1C109.5
C5—N1—C4129.07 (11)H1A—C1—H1C109.5
C5—N2—C6127.24 (11)H1B—C1—H1C109.5
C3—C2—C1111.68 (12)C3—C2—H2A109.3
C4—C3—C2114.61 (11)C1—C2—H2A109.3
O1—C4—N1122.53 (12)C3—C2—H2B109.3
O1—C4—C3123.91 (11)C1—C2—H2B109.3
N1—C4—C3113.56 (11)H2A—C2—H2B107.9
N2—C5—N1114.66 (11)C4—C3—H3A108.6
N2—C5—S126.56 (9)C2—C3—H3A108.6
N1—C5—S118.75 (9)C4—C3—H3B108.6
C11—C6—C7120.20 (11)C2—C3—H3B108.6
C11—C6—N2122.15 (11)H3A—C3—H3B107.6
C7—C6—N2117.61 (11)C8—C7—H7120.1
C8—C7—C6119.86 (11)C6—C7—H7120.1
C7—C8—C9120.51 (11)C7—C8—H8119.7
C8—C9—C10119.35 (12)C9—C8—H8119.7
C8—C9—C12118.79 (11)C11—C10—H10119.7
C10—C9—C12121.84 (11)C9—C10—H10119.7
C11—C10—C9120.51 (12)C10—C11—H11120.2
C10—C11—C6119.52 (11)C6—C11—H11120.2
O2—C12—O3124.13 (12)O3—C13—H13A110.2
O2—C12—C9123.78 (11)C14—C13—H13A110.2
O3—C12—C9112.08 (10)O3—C13—H13B110.2
O3—C13—C14107.33 (10)C14—C13—H13B110.2
C5—N1—H01115.6 (11)H13A—C13—H13B108.5
C4—N1—H01114.8 (11)C13—C14—H14A109.5
C5—N2—H02109.4 (11)C13—C14—H14B109.5
C6—N2—H02121.4 (11)H14A—C14—H14B109.5
C2—C1—H1A109.5C13—C14—H14C109.5
C2—C1—H1B109.5H14A—C14—H14C109.5
H1A—C1—H1B109.5H14B—C14—H14C109.5
C1—C2—C3—C4174.75 (13)C7—C8—C9—C101.97 (19)
C5—N1—C4—O110.3 (2)C7—C8—C9—C12176.71 (11)
C5—N1—C4—C3168.79 (12)C8—C9—C10—C110.99 (19)
C2—C3—C4—O14.85 (19)C12—C9—C10—C11177.65 (12)
C2—C3—C4—N1174.24 (12)C9—C10—C11—C61.1 (2)
C6—N2—C5—N1174.22 (11)C7—C6—C11—C102.31 (19)
C6—N2—C5—S4.13 (19)N2—C6—C11—C10179.92 (12)
C4—N1—C5—N210.80 (19)C13—O3—C12—O21.00 (18)
C4—N1—C5—S167.69 (10)C13—O3—C12—C9179.95 (10)
C5—N2—C6—C1142.44 (19)C8—C9—C12—O27.60 (19)
C5—N2—C6—C7139.90 (13)C10—C9—C12—O2173.76 (13)
C11—C6—C7—C81.35 (19)C8—C9—C12—O3171.36 (12)
N2—C6—C7—C8179.06 (11)C10—C9—C12—O37.28 (17)
C6—C7—C8—C90.81 (19)C12—O3—C13—C14169.36 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H02···O10.82 (2)1.92 (2)2.653 (1)148 (2)
N1—H01···O2i0.79 (1)2.20 (1)2.957 (1)160 (2)
C13—H13A···O1ii0.992.583.363 (2)136
C1—H1B···Siii0.983.003.854 (2)147
C13—H13B···Siv0.992.963.577 (1)122
C14—H14C···Sv0.982.983.821 (2)144
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+2, z+1; (iii) x1, y1, z1; (iv) x+1, y+1, z; (v) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC14H18N2O3S
Mr294.36
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9817 (4), 9.8843 (6), 11.0759 (6)
α, β, γ (°)114.472 (6), 101.156 (4), 102.277 (5)
V3)737.15 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.28 × 0.18 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.944, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15025, 4104, 3045
Rint0.036
(sin θ/λ)max1)0.720
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.096, 0.96
No. of reflections4104
No. of parameters191
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H02···O10.82 (2)1.92 (2)2.653 (1)148 (2)
N1—H01···O2i0.79 (1)2.20 (1)2.957 (1)160 (2)
C13—H13A···O1ii0.992.583.363 (2)136.0
C1—H1B···Siii0.983.003.854 (2)146.5
C13—H13B···Siv0.992.963.577 (1)121.6
C14—H14C···Sv0.982.983.821 (2)143.9
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+2, z+1; (iii) x1, y1, z1; (iv) x+1, y+1, z; (v) x+2, y+2, z+2.
 

References

First citationCampo, R. del, Criado, J. J., Hermosa, M. R., Jimenez-Sanchez, A., Manzano, J. L., Mante, E., Rodriguez-Fernandez, E. & Sanz, F. (2002). J. Inorg. Biochem. 89, 74–82.  Web of Science CSD CrossRef PubMed Google Scholar
First citationD'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232.  Web of Science PubMed CAS Google Scholar
First citationDušek, K. (1985). Adv. Polym. Sci. 78, 115–118.  Google Scholar
First citationHuebner, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schrooder, D. C., Troxell, H. A. & Scholz, C. R. (1953). J. Am. Chem. Soc. 75, 2274–2275.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRodriguez-Fernandez, E., Manzano, J. L., Benito, J. J., Hermosa, R., Monte, E. & Criado, J. J. (2005). J. Inorg. Biochem. 99 , 1558–1572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217–1222.  CAS Google Scholar
First citationZeng, R. S., Zou, J. P., Zchen, S. J. & Shen, Q. (2003). Org. Lett. 61, 1657–1659.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds