organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1267-o1268

Swietenolide monohydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 6 June 2008; accepted 10 June 2008; online 13 June 2008)

The title compound, a natural B,D-seco-limonoid, C27H34O8·H2O, and known as Swietenolide monohydrate, has been isolated from S. macrophylla King. In the molecular structure, the four fused six-membered rings adopt twist-boat (ring A), approximate chair (ring B), envelope (ring C) and half-chair (ring D) conformations. The attached furan ring is essentially planar. O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions connect the mol­ecules into a two-dimensional network parallel to the (100) plane. C—H⋯π inter­actions are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see, for example: Fowles et al. (2007[Fowles, R. G., Mootoo, B. S., Ramsewak, R., Reynolds, W. & Lough, A. J. (2007). Acta Cryst. E63, o660-o661.]); Solomon et al. (2003[Solomon, K. A., Malathi, R., Rajan, S. S., Narasimhan, S. & Nethaji, M. (2003). Acta Cryst. E59, o1519-o1521.]). For the bioactivities of Swietenolide, see, for example: Chan et al. (1976[Chan, K. C., Tang, T. S. & Toh, H. T. (1976). Phytochemistry, 15, 429-430.]); Jean et al. (2000[Jean, B., Njikam, N., Johnson, A. F., Leonardo, K. B. & Pascal, R. (2000). J. Ethnopharmacol. 69, 27-33.]); Kipassa et al. (2008[Kipassa, N. T., Iwagawa, T., Okamura, H., Doe, M., Morimoto, Y. & Nakatani, M. (2008). Phytochemistry, 69, 1782-1787.]); Munoz et al. (2000[Munoz, V., Sauvain, M., Bourdy, G., Callapa, J., Rojas, I., Vargas, L., Tae, A. & Deharo, E. (2000). J. Ethnopharmacol. 69, 139-155.]); Soediro et al. (1990[Soediro, I., Padmawinata, K., Wattimena, J. R. & Sekita, S. (1990). Acta Pharm. Indones. 15, 1-13.]).

[Scheme 1]

Experimental

Crystal data
  • C27H34O8·H2O

  • Mr = 504.56

  • Monoclinic, P 21

  • a = 11.5897 (1) Å

  • b = 8.8972 (1) Å

  • c = 11.7397 (1) Å

  • β = 90.571 (1)°

  • V = 1210.49 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.51 × 0.26 × 0.15 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.985

  • 29214 measured reflections

  • 3748 independent reflections

  • 3473 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.06

  • 3748 reflections

  • 336 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1Wi 0.82 2.02 2.835 (2) 171
O5—H5A⋯O1Wii 0.82 2.05 2.760 (2) 144
O1W—H1W1⋯O1iii 0.84 (2) 1.98 (3) 2.809 (2) 169 (3)
O1W—H2W1⋯O6 0.842 (19) 1.994 (19) 2.821 (2) 167 (3)
C1—H1A⋯O1iv 0.98 2.38 3.325 (2) 160
C3—H3A⋯O2 0.98 2.57 3.032 (2) 109
C3—H3A⋯O7 0.98 2.40 2.861 (2) 108
C7—H7A⋯O2 0.97 2.34 2.690 (2) 100
C7—H7B⋯O4v 0.97 2.38 3.282 (2) 155
C21—H21B⋯O1 0.96 2.59 3.459 (2) 150
C21—H21C⋯O5 0.96 2.46 3.077 (3) 122
C27—H27B⋯O3 0.96 2.57 2.911 (2) 101
C23—H23ACg1vi 0.98 3.04 3.884 (2) 146
C25—H25ACg1vii 0.96 3.15 3.981 (3) 146
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) x, y, z+1; (iv) [-x, y-{\script{1\over 2}}, -z]; (v) [-x+1, y+{\script{1\over 2}}, -z]; (vi) [-x+1, y+{\script{1\over 2}}, -z+1]; (vii) [-x+1, y-{\script{1\over 2}}, -z+1]. Cg1 is the centroid of the C17–C20/O8 furan ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Swietenia macrophylla King (Meliaceae) or locally known as Big-leaf mahogany is an evergreen tree that reaches 45 to 60 meter in height. The decoction of the seeds of Swietenia macrophylla King was used traditionally to induce abortion, to heal wounds and to treat various skin ailments (Munoz et al., 2000). In Malaysia, the seeds were ingested by local folks to provide cure for high blood pressure (Chan et al., 1976). The bark extract of Swietenia macrophylla King was also found to be active in antimalaria activity (Soediro et al., 1990). In a continual research on this plant, the leaf extracts of S. macrophylla were examined. The title compound, (I), (systematic name: 7,11-Methano-2H-cycloocta[f][2]benzopyran-8-acetic acid, 4-(3-furanyl)-1,4,4a,5,6,6a,7,8,9,10,11,12-dodecahydro-α,10-dihydroxy- 4a,7,9,9-tetramethyl-2,13-dioxo-methyl ester monohydrate) has been isolated from the n-hexane extract. It has been shown to possess biological activities such as antimalaria (Jean et al., 2000) and antifeedant (Kipassa et al., 2008).

The title molecule (Fig. 1) has four fused six-membered rings (A/B/C/D). The conformations adopted by rings A, B, C and D are twist boat, approximate chair, envelope and half-chair, respectively, with the puckering parameter (Cremer & Pople, 1975) Q = 0.774 (2) Å, θ = 85.0 (1)° and ϕ = 72.70 (15)° for ring A; Q = 0.642 (2) Å, θ = 161.9 (2)° and ϕ = 200.9 (6)° for ring B; Q = 0.460 (2) Å, θ = 127.4 (2)° and ϕ = 354.3 (3)° for ring C, with atom C11 displaced from the C8/C9/C10/C12/C13 plane by 0.329 (2) Å; and Q = 0.587 (2) Å, θ = 111.3 (2)° and ϕ = 93.72 (19)° for ring D, with the C12 and C16 pucker atoms deviating from the C13—C15/O3 plane by 0.343 (2) Å and -0.384 (2) Å, respectively. The furan ring (C17—C20/O8) is planar and is attached equatorially to lactone ring D, the torsion angle C12–C16–C17–C20 being 101.9 (2)°. The orientation of the acetic acid, 2-hydroxy-methyl ester group (C23—C25/O5—O7) at C3 can be indicated by the torsion angles of C2–C3–C23–O5 = -46.9 (2)° and C2–C3–C23–C24 = 73.2 (2)° and the methyoxyl group is slightly deviated with respect to the carbonyl group with the torsion angle C25–O7–C24–O6 of 6.5 (3)°. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structures (Fowles et al., 2007; Solomon et al., 2003).

In the crystal packing (Fig. 2), O—H···O hydrogen bonds and weak C—H···O interactions connect the molecules into two-dimensional network parallel to the (1 0 0) plane. O—H···O hydrogen bonds between the water and swietenolide molecules together with weak C—H···O intra- and intermolecular interactions (Table 1) play an important role in the stabilization of the crystal structure. C—H···π interactions involving furan ring (C17—C20/O8, centroid Cg1) are also observed in the crystal (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For related structures, see, for example: Fowles et al. (2007); Solomon et al. (2003). For the bioactivities of Sweitenolide, see, for example: Chan et al. (1976); Jean et al. (2000); Kipassa et al. (2008); Munoz et al. (2000); Soediro et al. (1990). Cg1 is the centroid of the C17–C20/O8 furan ring

Experimental top

Air-dried powdered leaves of S. macrophylla were extracted with n-hexane, CH2Cl2 and MeOH (5 L each) for five days respectively at room temperature. The solvents were evaporated under reduced pressure to afford n-hexane extract (12.8 g), CH2Cl2 extract (18.2 g) and MeOH extract (107.8 g). The n-hexane extract was subjected to column chromatography using silica gel with petroleum ether-ethyl acetate gradient to afford seven fractions (M1—M7). Fraction M7 (1.05 g) was further separated by preparative TLC with eluent system n-hexane–ethyl acetate (5:1 v/v) to afford three sub-fractions (M7a—M7c). Fraction M7b was recrystallized from CHCl3 to yield white single crystals of the title compound (m.p. 494–495 K).

Refinement top

Water H atoms are located in a difference map and the positional parameters were refined, with a distance restraint of O—H = 0.80 (1) Å, and with Uiso(H) = 1.5Ueq(O). The remaining H atoms were placed in calculated positions with d(O—H) = 0.82 Å, Uiso = 1.2Ueq(O), d(C—H) = 0.97–0.98 Å, Uiso = 1.2Ueq(C) for CH and aromatic, and d(C—H) = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. As there is no large anomalous dispersion for the determination of the absolute configuration, a total of 3299 Friedel pairs were merged before final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering scheme. O—H···O hydrogen bond is drawn as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the a axis. Hydrogen bonds are drawn as dash lines.
Methyl 4-(3-furyl)-α,10-dihydroxy-4a,7,9,9-tetramethyl-2,13-dioxo- 1,4,4a,5,6,6a,7,8,9,10,11,12-dodecahydro-7,11-methano-2H- cycloocta[f][2]benzopyran-8-acetate monohydrate top
Crystal data top
C27H34O8·H2OF(000) = 540
Mr = 504.56Dx = 1.384 Mg m3
Monoclinic, P21Melting point = 494–495 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.5897 (1) ÅCell parameters from 3748 reflections
b = 8.8972 (1) Åθ = 1.7–30.0°
c = 11.7397 (1) ŵ = 0.10 mm1
β = 90.571 (1)°T = 100 K
V = 1210.49 (2) Å3Block, white
Z = 20.51 × 0.26 × 0.15 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3748 independent reflections
Radiation source: fine-focus sealed tube3473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.7°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1212
Tmin = 0.949, Tmax = 0.985l = 1616
29214 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2523P]
where P = (Fo2 + 2Fc2)/3
3748 reflections(Δ/σ)max = 0.001
336 parametersΔρmax = 0.60 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
C27H34O8·H2OV = 1210.49 (2) Å3
Mr = 504.56Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.5897 (1) ŵ = 0.10 mm1
b = 8.8972 (1) ÅT = 100 K
c = 11.7397 (1) Å0.51 × 0.26 × 0.15 mm
β = 90.571 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3473 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.985Rint = 0.035
29214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.60 e Å3
3748 reflectionsΔρmin = 0.30 e Å3
336 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14701 (12)0.92970 (17)0.07457 (11)0.0202 (3)
O20.15836 (12)0.51412 (17)0.17362 (12)0.0215 (3)
H2A0.11470.45060.19980.032*
O30.59393 (12)0.49859 (16)0.32385 (11)0.0178 (3)
O40.59920 (14)0.30211 (18)0.21195 (12)0.0249 (3)
O50.05304 (14)1.03697 (19)0.33979 (13)0.0281 (3)
H5A0.06301.11550.30460.042*
O60.09281 (15)0.89163 (19)0.52750 (12)0.0286 (3)
O70.23735 (14)0.75766 (18)0.45318 (12)0.0254 (3)
O80.63962 (14)0.8207 (2)0.61555 (13)0.0307 (4)
C10.09219 (16)0.6289 (2)0.11769 (16)0.0174 (3)
H1A0.02210.58190.08690.021*
C20.05482 (16)0.7551 (2)0.19977 (16)0.0176 (3)
C30.16498 (16)0.8467 (2)0.22950 (15)0.0157 (3)
H3A0.22380.77190.24950.019*
C40.21274 (15)0.9309 (2)0.12163 (15)0.0148 (3)
C50.16505 (15)0.8578 (2)0.01271 (16)0.0168 (3)
C60.16287 (16)0.6893 (2)0.01549 (16)0.0165 (3)
H6A0.12680.65320.05520.020*
C70.29236 (15)0.6434 (2)0.01551 (15)0.0160 (3)
H7A0.29810.53690.03220.019*
H7B0.32270.65920.06020.019*
C80.36654 (15)0.7287 (2)0.10020 (15)0.0153 (3)
C90.34658 (16)0.8973 (2)0.10259 (16)0.0162 (3)
H9A0.36320.93260.02540.019*
C100.43068 (17)0.9823 (2)0.18131 (17)0.0199 (4)
H10A0.49731.01280.13760.024*
H10B0.39321.07260.20860.024*
C110.47154 (16)0.8905 (2)0.28303 (16)0.0189 (4)
H11A0.40650.86990.33200.023*
H11B0.52750.94850.32650.023*
C120.52646 (15)0.7415 (2)0.24632 (15)0.0150 (3)
C130.44704 (16)0.6598 (2)0.16417 (15)0.0152 (3)
C140.46133 (16)0.4901 (2)0.15927 (15)0.0171 (3)
H14A0.38910.44440.18200.021*
H14B0.47440.46190.08060.021*
C150.55661 (17)0.4233 (2)0.23106 (16)0.0188 (4)
C160.53698 (15)0.6395 (2)0.35230 (15)0.0156 (3)
H16A0.45890.61610.37830.019*
C170.60331 (16)0.7034 (2)0.45044 (16)0.0173 (3)
C180.72511 (18)0.7205 (3)0.46494 (18)0.0241 (4)
H18A0.78170.68820.41500.029*
C190.74236 (19)0.7921 (3)0.56442 (19)0.0246 (4)
H19A0.81420.81840.59420.030*
C200.55640 (19)0.7630 (3)0.54466 (18)0.0284 (5)
H20A0.47780.76460.55960.034*
C210.04291 (17)0.8461 (3)0.14183 (18)0.0234 (4)
H21A0.10410.77930.11930.035*
H21B0.01340.89630.07590.035*
H21C0.07200.91920.19440.035*
C220.00204 (18)0.6826 (2)0.30642 (17)0.0227 (4)
H22A0.05920.61600.28390.034*
H22B0.02800.75980.35500.034*
H22C0.06050.62700.34680.034*
C230.15457 (18)0.9491 (2)0.33581 (15)0.0196 (4)
H23A0.22071.01770.33660.024*
C240.1553 (2)0.8629 (2)0.44867 (17)0.0238 (4)
C250.2369 (2)0.6683 (3)0.55726 (19)0.0297 (5)
H25A0.29410.59060.55230.045*
H25B0.16220.62360.56670.045*
H25C0.25410.73180.62130.045*
C260.19021 (17)1.0997 (2)0.11612 (16)0.0189 (4)
H26A0.10871.11750.10910.028*
H26B0.22871.14140.05130.028*
H26C0.21901.14650.18440.028*
C270.64551 (17)0.7674 (2)0.19245 (17)0.0207 (4)
H27A0.63700.82980.12620.031*
H27B0.67820.67250.17100.031*
H27C0.69560.81610.24660.031*
O1W0.01243 (14)0.81352 (19)0.74563 (13)0.0267 (3)
H1W10.058 (2)0.838 (4)0.798 (2)0.040*
H2W10.044 (2)0.825 (4)0.6819 (14)0.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0206 (6)0.0259 (7)0.0140 (6)0.0037 (6)0.0005 (5)0.0029 (5)
O20.0224 (7)0.0211 (7)0.0212 (7)0.0004 (6)0.0047 (5)0.0050 (6)
O30.0198 (6)0.0185 (6)0.0152 (6)0.0036 (5)0.0005 (5)0.0004 (5)
O40.0310 (8)0.0233 (7)0.0205 (7)0.0089 (6)0.0003 (6)0.0039 (6)
O50.0347 (9)0.0249 (8)0.0249 (7)0.0099 (7)0.0088 (6)0.0019 (6)
O60.0422 (9)0.0274 (8)0.0161 (7)0.0006 (7)0.0064 (6)0.0004 (6)
O70.0362 (8)0.0245 (7)0.0155 (6)0.0021 (7)0.0004 (6)0.0027 (6)
O80.0296 (8)0.0385 (9)0.0238 (7)0.0001 (7)0.0045 (6)0.0118 (7)
C10.0154 (8)0.0208 (9)0.0160 (8)0.0025 (7)0.0013 (6)0.0009 (7)
C20.0150 (8)0.0217 (9)0.0162 (8)0.0008 (7)0.0025 (6)0.0003 (7)
C30.0187 (8)0.0174 (8)0.0109 (7)0.0001 (6)0.0019 (6)0.0009 (6)
C40.0157 (8)0.0172 (8)0.0115 (7)0.0016 (6)0.0018 (6)0.0005 (6)
C50.0114 (7)0.0223 (9)0.0167 (8)0.0011 (7)0.0014 (6)0.0006 (7)
C60.0151 (8)0.0214 (9)0.0130 (8)0.0011 (7)0.0002 (6)0.0002 (7)
C70.0157 (8)0.0194 (8)0.0129 (7)0.0005 (7)0.0014 (6)0.0014 (6)
C80.0138 (8)0.0175 (8)0.0145 (8)0.0005 (6)0.0028 (6)0.0004 (6)
C90.0158 (8)0.0169 (8)0.0160 (8)0.0009 (6)0.0004 (6)0.0012 (6)
C100.0183 (8)0.0161 (8)0.0252 (9)0.0013 (7)0.0041 (7)0.0018 (7)
C110.0178 (8)0.0177 (9)0.0211 (9)0.0002 (7)0.0033 (7)0.0019 (7)
C120.0130 (7)0.0167 (8)0.0154 (8)0.0001 (6)0.0001 (6)0.0007 (6)
C130.0145 (8)0.0173 (8)0.0138 (8)0.0003 (6)0.0029 (6)0.0008 (6)
C140.0193 (8)0.0180 (8)0.0141 (8)0.0024 (7)0.0015 (6)0.0005 (6)
C150.0212 (9)0.0210 (9)0.0143 (8)0.0024 (7)0.0027 (6)0.0004 (7)
C160.0146 (8)0.0182 (8)0.0141 (8)0.0011 (6)0.0014 (6)0.0007 (6)
C170.0161 (8)0.0187 (8)0.0170 (8)0.0011 (7)0.0004 (6)0.0006 (7)
C180.0179 (9)0.0307 (11)0.0237 (10)0.0016 (8)0.0014 (7)0.0001 (8)
C190.0223 (10)0.0262 (10)0.0253 (10)0.0013 (8)0.0072 (8)0.0019 (8)
C200.0219 (9)0.0410 (12)0.0223 (10)0.0003 (9)0.0001 (7)0.0116 (9)
C210.0162 (8)0.0321 (11)0.0218 (9)0.0018 (8)0.0020 (7)0.0011 (8)
C220.0249 (10)0.0241 (10)0.0193 (9)0.0040 (8)0.0062 (8)0.0008 (7)
C230.0273 (10)0.0183 (8)0.0134 (8)0.0012 (7)0.0041 (7)0.0004 (7)
C240.0360 (11)0.0195 (9)0.0158 (9)0.0037 (8)0.0003 (7)0.0007 (7)
C250.0349 (12)0.0294 (11)0.0248 (10)0.0016 (9)0.0009 (9)0.0061 (9)
C260.0221 (9)0.0189 (8)0.0156 (8)0.0026 (7)0.0019 (7)0.0025 (7)
C270.0169 (8)0.0252 (9)0.0200 (9)0.0019 (7)0.0031 (7)0.0035 (8)
O1W0.0309 (8)0.0285 (8)0.0209 (7)0.0014 (7)0.0036 (6)0.0020 (6)
Geometric parameters (Å, º) top
O1—C51.224 (2)C11—C121.534 (3)
O2—C11.432 (2)C11—H11A0.9700
O2—H2A0.8200C11—H11B0.9700
O3—C151.346 (2)C12—C131.513 (3)
O3—C161.457 (2)C12—C271.541 (3)
O4—C151.208 (2)C12—C161.544 (3)
O5—C231.414 (2)C13—C141.521 (3)
O5—H5A0.8200C14—C151.504 (3)
O6—C241.208 (3)C14—H14A0.9700
O7—C241.335 (3)C14—H14B0.9700
O7—C251.458 (3)C16—C171.491 (3)
O8—C191.363 (3)C16—H16A0.9800
O8—C201.368 (3)C17—C201.346 (3)
C1—C21.545 (3)C17—C181.428 (3)
C1—C61.555 (3)C18—C191.344 (3)
C1—H1A0.9800C18—H18A0.9300
C2—C221.540 (3)C19—H19A0.9300
C2—C211.544 (3)C20—H20A0.9300
C2—C31.552 (3)C21—H21A0.9600
C3—C231.551 (3)C21—H21B0.9600
C3—C41.577 (2)C21—H21C0.9600
C3—H3A0.9800C22—H22A0.9600
C4—C261.526 (3)C22—H22B0.9600
C4—C51.533 (3)C22—H22C0.9600
C4—C91.598 (2)C23—C241.531 (3)
C5—C61.500 (3)C23—H23A0.9800
C6—C71.555 (3)C25—H25A0.9600
C6—H6A0.9800C25—H25B0.9600
C7—C81.512 (3)C25—H25C0.9600
C7—H7A0.9700C26—H26A0.9600
C7—H7B0.9700C26—H26B0.9600
C8—C131.340 (3)C26—H26C0.9600
C8—C91.518 (3)C27—H27A0.9600
C9—C101.536 (3)C27—H27B0.9600
C9—H9A0.9800C27—H27C0.9600
C10—C111.518 (3)O1W—H1W10.834 (10)
C10—H10A0.9700O1W—H2W10.843 (10)
C10—H10B0.9700
C1—O2—H2A109.5C8—C13—C12123.60 (17)
C15—O3—C16118.08 (15)C8—C13—C14120.57 (17)
C23—O5—H5A109.5C12—C13—C14115.82 (16)
C24—O7—C25114.02 (17)C15—C14—C13116.77 (17)
C19—O8—C20106.00 (16)C15—C14—H14A108.1
O2—C1—C2112.61 (15)C13—C14—H14A108.1
O2—C1—C6108.45 (15)C15—C14—H14B108.1
C2—C1—C6112.51 (16)C13—C14—H14B108.1
O2—C1—H1A107.7H14A—C14—H14B107.3
C2—C1—H1A107.7O4—C15—O3117.75 (18)
C6—C1—H1A107.7O4—C15—C14123.19 (18)
C22—C2—C21106.37 (16)O3—C15—C14119.02 (16)
C22—C2—C1108.60 (16)O3—C16—C17105.89 (15)
C21—C2—C1108.38 (15)O3—C16—C12110.70 (14)
C22—C2—C3111.68 (15)C17—C16—C12115.75 (16)
C21—C2—C3114.95 (17)O3—C16—H16A108.1
C1—C2—C3106.68 (14)C17—C16—H16A108.1
C23—C3—C2114.79 (15)C12—C16—H16A108.1
C23—C3—C4113.45 (15)C20—C17—C18105.48 (18)
C2—C3—C4111.33 (14)C20—C17—C16125.14 (18)
C23—C3—H3A105.4C18—C17—C16129.34 (17)
C2—C3—H3A105.4C19—C18—C17107.01 (19)
C4—C3—H3A105.4C19—C18—H18A126.5
C26—C4—C5108.80 (15)C17—C18—H18A126.5
C26—C4—C3116.15 (15)C18—C19—O8110.39 (19)
C5—C4—C3109.99 (15)C18—C19—H19A124.8
C26—C4—C9110.15 (15)O8—C19—H19A124.8
C5—C4—C998.41 (13)C17—C20—O8111.09 (19)
C3—C4—C9111.86 (14)C17—C20—H20A124.5
O1—C5—C6122.52 (18)O8—C20—H20A124.5
O1—C5—C4122.26 (17)C2—C21—H21A109.5
C6—C5—C4114.33 (16)C2—C21—H21B109.5
C5—C6—C7104.25 (15)H21A—C21—H21B109.5
C5—C6—C1111.81 (16)C2—C21—H21C109.5
C7—C6—C1115.12 (16)H21A—C21—H21C109.5
C5—C6—H6A108.5H21B—C21—H21C109.5
C7—C6—H6A108.5C2—C22—H22A109.5
C1—C6—H6A108.5C2—C22—H22B109.5
C8—C7—C6114.23 (15)H22A—C22—H22B109.5
C8—C7—H7A108.7C2—C22—H22C109.5
C6—C7—H7A108.7H22A—C22—H22C109.5
C8—C7—H7B108.7H22B—C22—H22C109.5
C6—C7—H7B108.7O5—C23—C24104.23 (15)
H7A—C7—H7B107.6O5—C23—C3115.01 (16)
C13—C8—C7121.79 (17)C24—C23—C3113.71 (16)
C13—C8—C9123.16 (17)O5—C23—H23A107.9
C7—C8—C9114.99 (16)C24—C23—H23A107.9
C8—C9—C10113.69 (16)C3—C23—H23A107.9
C8—C9—C4109.64 (15)O6—C24—O7123.39 (19)
C10—C9—C4115.77 (15)O6—C24—C23124.0 (2)
C8—C9—H9A105.6O7—C24—C23112.54 (17)
C10—C9—H9A105.6O7—C25—H25A109.5
C4—C9—H9A105.6O7—C25—H25B109.5
C11—C10—C9113.56 (16)H25A—C25—H25B109.5
C11—C10—H10A108.9O7—C25—H25C109.5
C9—C10—H10A108.9H25A—C25—H25C109.5
C11—C10—H10B108.9H25B—C25—H25C109.5
C9—C10—H10B108.9C4—C26—H26A109.5
H10A—C10—H10B107.7C4—C26—H26B109.5
C10—C11—C12111.75 (16)H26A—C26—H26B109.5
C10—C11—H11A109.3C4—C26—H26C109.5
C12—C11—H11A109.3H26A—C26—H26C109.5
C10—C11—H11B109.3H26B—C26—H26C109.5
C12—C11—H11B109.3C12—C27—H27A109.5
H11A—C11—H11B107.9C12—C27—H27B109.5
C13—C12—C11110.05 (15)H27A—C27—H27B109.5
C13—C12—C27110.61 (15)C12—C27—H27C109.5
C11—C12—C27111.21 (16)H27A—C27—H27C109.5
C13—C12—C16105.90 (15)H27B—C27—H27C109.5
C11—C12—C16108.13 (14)H1W1—O1W—H2W1110 (3)
C27—C12—C16110.78 (15)
O2—C1—C2—C2248.6 (2)C10—C11—C12—C1350.7 (2)
C6—C1—C2—C22171.55 (16)C10—C11—C12—C2772.3 (2)
O2—C1—C2—C21163.78 (15)C10—C11—C12—C16165.89 (15)
C6—C1—C2—C2173.28 (19)C7—C8—C13—C12177.37 (16)
O2—C1—C2—C371.90 (18)C9—C8—C13—C120.4 (3)
C6—C1—C2—C351.0 (2)C7—C8—C13—C144.0 (3)
C22—C2—C3—C2344.9 (2)C9—C8—C13—C14178.97 (17)
C21—C2—C3—C2376.4 (2)C11—C12—C13—C823.8 (2)
C1—C2—C3—C23163.39 (15)C27—C12—C13—C899.5 (2)
C22—C2—C3—C4175.47 (16)C16—C12—C13—C8140.46 (17)
C21—C2—C3—C454.2 (2)C11—C12—C13—C14154.82 (15)
C1—C2—C3—C466.01 (19)C27—C12—C13—C1481.9 (2)
C23—C3—C4—C2626.9 (2)C16—C12—C13—C1438.18 (19)
C2—C3—C4—C26104.35 (19)C8—C13—C14—C15177.96 (16)
C23—C3—C4—C5151.03 (16)C12—C13—C14—C153.4 (2)
C2—C3—C4—C519.7 (2)C16—O3—C15—O4175.46 (16)
C23—C3—C4—C9100.69 (18)C16—O3—C15—C142.0 (2)
C2—C3—C4—C9128.02 (16)C13—C14—C15—O4157.87 (18)
C26—C4—C5—O120.6 (2)C13—C14—C15—O324.8 (2)
C3—C4—C5—O1148.82 (17)C15—O3—C16—C17174.57 (15)
C9—C4—C5—O194.16 (19)C15—O3—C16—C1248.4 (2)
C26—C4—C5—C6169.93 (15)C13—C12—C16—O364.86 (17)
C3—C4—C5—C641.7 (2)C11—C12—C16—O3177.22 (14)
C9—C4—C5—C675.35 (17)C27—C12—C16—O355.1 (2)
O1—C5—C6—C7101.4 (2)C13—C12—C16—C17174.66 (15)
C4—C5—C6—C768.06 (18)C11—C12—C16—C1756.7 (2)
O1—C5—C6—C1133.60 (18)C27—C12—C16—C1765.4 (2)
C4—C5—C6—C156.9 (2)O3—C16—C17—C20135.1 (2)
O2—C1—C6—C5132.57 (17)C12—C16—C17—C20101.9 (2)
C2—C1—C6—C57.3 (2)O3—C16—C17—C1847.3 (3)
O2—C1—C6—C713.8 (2)C12—C16—C17—C1875.7 (3)
C2—C1—C6—C7111.39 (18)C20—C17—C18—C191.6 (3)
C5—C6—C7—C847.4 (2)C16—C17—C18—C19176.3 (2)
C1—C6—C7—C875.5 (2)C17—C18—C19—O80.7 (3)
C6—C7—C8—C13137.38 (17)C20—O8—C19—C180.5 (3)
C6—C7—C8—C945.4 (2)C18—C17—C20—O82.0 (3)
C13—C8—C9—C102.5 (3)C16—C17—C20—O8176.02 (19)
C7—C8—C9—C10174.69 (15)C19—O8—C20—C171.6 (3)
C13—C8—C9—C4128.88 (17)C2—C3—C23—O546.9 (2)
C7—C8—C9—C454.0 (2)C4—C3—C23—O582.7 (2)
C26—C4—C9—C8176.16 (16)C2—C3—C23—C2473.2 (2)
C5—C4—C9—C862.51 (17)C4—C3—C23—C24157.22 (17)
C3—C4—C9—C853.1 (2)C25—O7—C24—O66.5 (3)
C26—C4—C9—C1053.6 (2)C25—O7—C24—C23177.14 (18)
C5—C4—C9—C10167.24 (15)O5—C23—C24—O612.4 (3)
C3—C4—C9—C1077.2 (2)C3—C23—C24—O6138.4 (2)
C8—C9—C10—C1130.4 (2)O5—C23—C24—O7171.26 (17)
C4—C9—C10—C1197.84 (19)C3—C23—C24—O745.3 (2)
C9—C10—C11—C1255.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1Wi0.822.022.835 (2)171
O5—H5A···O1Wii0.822.052.760 (2)144
O1W—H1W1···O1iii0.84 (2)1.98 (3)2.809 (2)169 (3)
O1W—H2W1···O60.84 (2)1.99 (2)2.821 (2)167 (3)
C1—H1A···O1iv0.982.393.325 (2)160
C3—H3A···O20.982.573.032 (2)109
C3—H3A···O70.982.402.861 (2)108
C7—H7A···O20.972.342.690 (2)100
C7—H7B···O4v0.972.383.282 (2)155
C21—H21B···O10.962.593.459 (2)150
C21—H21C···O50.962.463.077 (3)122
C27—H27B···O30.962.572.911 (2)101
C23—H23A···Cg1vi0.983.043.884 (2)146
C25—H25A···Cg1vii0.963.153.981 (3)146
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x, y, z+1; (iv) x, y1/2, z; (v) x+1, y+1/2, z; (vi) x+1, y+1/2, z+1; (vii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC27H34O8·H2O
Mr504.56
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)11.5897 (1), 8.8972 (1), 11.7397 (1)
β (°) 90.571 (1)
V3)1210.49 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.51 × 0.26 × 0.15
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
29214, 3748, 3473
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.06
No. of reflections3748
No. of parameters336
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1Wi0.822.02182.835 (2)171
O5—H5A···O1Wii0.822.05082.760 (2)144
O1W—H1W1···O1iii0.84 (2)1.98 (3)2.809 (2)169 (3)
O1W—H2W1···O60.842 (19)1.994 (19)2.821 (2)167 (3)
C1—H1A···O1iv0.982.38543.325 (2)160
C3—H3A···O20.982.57213.032 (2)109
C3—H3A···O70.982.39812.861 (2)108
C7—H7A···O20.972.33962.690 (2)100
C7—H7B···O4v0.972.37533.282 (2)155
C21—H21B···O10.962.59433.459 (2)150
C21—H21C···O50.962.46213.077 (3)122
C27—H27B···O30.962.56962.911 (2)101
C23—H23A···Cg1vi0.983.04243.884 (2)146
C25—H25A···Cg1vii0.963.15053.981 (3)146
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y+1/2, z+1; (iii) x, y, z+1; (iv) x, y1/2, z; (v) x+1, y+1/2, z; (vi) x+1, y+1/2, z+1; (vii) x+1, y1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors thank Universiti Sains Malaysia for the University Golden Goose (grant No. 1001/PFIZIK/811012) and the Malaysian Government for the E-Science Fund (grant No. 305/PKIMIA/613411).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, K. C., Tang, T. S. & Toh, H. T. (1976). Phytochemistry, 15, 429–430.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFowles, R. G., Mootoo, B. S., Ramsewak, R., Reynolds, W. & Lough, A. J. (2007). Acta Cryst. E63, o660–o661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJean, B., Njikam, N., Johnson, A. F., Leonardo, K. B. & Pascal, R. (2000). J. Ethnopharmacol. 69, 27–33.  Web of Science PubMed Google Scholar
First citationKipassa, N. T., Iwagawa, T., Okamura, H., Doe, M., Morimoto, Y. & Nakatani, M. (2008). Phytochemistry, 69, 1782–1787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMunoz, V., Sauvain, M., Bourdy, G., Callapa, J., Rojas, I., Vargas, L., Tae, A. & Deharo, E. (2000). J. Ethnopharmacol. 69, 139–155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoediro, I., Padmawinata, K., Wattimena, J. R. & Sekita, S. (1990). Acta Pharm. Indones. 15, 1–13.  CAS Google Scholar
First citationSolomon, K. A., Malathi, R., Rajan, S. S., Narasimhan, S. & Nethaji, M. (2003). Acta Cryst. E59, o1519–o1521.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1267-o1268
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds