metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­aqua­(1H-benzimidazole-5,6-di­carboxyl­ato-κN3)copper(II) penta­hydrate

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 19 November 2007; accepted 11 June 2008; online 19 June 2008)

The title compound, [Cu(C9H4N2O4)(H2O)5]·5H2O, contains one crystallographically independent CuII atom and one 1H-benzimidazole-5,6-dicarboxyl­ate (bdc) ligand, along with five coordinated and five uncoordinated water mol­ecules. The CuII atom is six-coordinated by one N atom from the bdc ligand and five O atoms from water mol­ecules, giving an octa­hedral coordination geometry. Hydrogen bonds link the mononuclear complex and uncoordinated water mol­ecules into a three-dimensional network.

Related literature

For related literature, see: Lemos et al. (2004[Lemos, S. S., Deflon, V. M., Bessler, K. E., Abbott, M. P. & Niquet, E. (2004). Transition Met. Chem. 29, 46-50.]); Park et al. (2006[Park, K. S., Ni, Z., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186-10191.]); Zhang et al. (2007[Zhang, X.-M., Hao, Z.-M., Zhang, W.-X. & Chen, X.-M. (2007). Angew. Chem. Int. Ed. 46, 3456-3459.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H4N2O4)(H2O)5]·5H2O

  • Mr = 447.84

  • Triclinic, [P \overline 1]

  • a = 6.8449 (5) Å

  • b = 11.4381 (8) Å

  • c = 12.3549 (9) Å

  • α = 78.1549 (1)°

  • β = 78.6224 (1)°

  • γ = 74.8804 (1)°

  • V = 903.29 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 296 (2) K

  • 0.24 × 0.24 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.748, Tmax = 0.748

  • 4648 measured reflections

  • 3164 independent reflections

  • 2774 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.05

  • 3164 reflections

  • 295 parameters

  • 20 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10W—H10A⋯O1Wi 0.80 (3) 2.09 (3) 2.855 (3) 160 (4)
O10W—H10B⋯O3ii 0.81 (3) 2.05 (3) 2.802 (3) 155 (4)
O9W—H9B⋯O4iii 0.81 (3) 1.94 (3) 2.739 (3) 174 (4)
O7W—H7B⋯O6W 0.83 (3) 1.95 (3) 2.758 (4) 166 (4)
O7W—H7A⋯O3 0.81 (3) 1.94 (3) 2.735 (3) 165 (4)
O6W—H6C⋯O2 0.79 (3) 2.03 (3) 2.773 (3) 156 (5)
O6W—H6B⋯O1iv 0.84 (3) 1.96 (3) 2.772 (4) 162 (5)
O5W—H5A⋯O2v 0.78 (2) 1.84 (3) 2.611 (3) 170 (4)
O5W—H5B⋯O10W 0.80 (2) 2.01 (3) 2.793 (3) 169 (4)
O4W—H4A⋯O10Wvi 0.81 (3) 1.96 (3) 2.760 (3) 168 (5)
O4W—H4B⋯O7Wii 0.79 (3) 1.97 (3) 2.723 (4) 160 (5)
O3W—H3C⋯O9Wi 0.78 (2) 2.05 (3) 2.820 (3) 172 (4)
O3W—H3B⋯O3ii 0.81 (2) 2.00 (3) 2.800 (3) 170 (4)
O2W—H2A⋯O4vii 0.82 (3) 1.93 (3) 2.709 (3) 160 (4)
O2W—H2B⋯O9W 0.80 (3) 1.94 (3) 2.735 (3) 172 (4)
O1W—H1D⋯O1v 0.78 (2) 1.85 (3) 2.621 (3) 170 (4)
N1—H1A⋯O7Wiii 0.86 1.97 2.805 (3) 163
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+2, -z+1; (vii) x-1, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several coordination polymers formed by the ligand 1H-benzoimidazole-5,6-dicarboxylic acid have been reported recently: µ2-2,2'-Bibenzimidazolato-N',N'',N''')tetrakis (triphenylphosphine)-di-copper(I) dichloromethane solvate (Lemos et al., 2004), catena-poly [tetrakis(µ2Benzimidazolato-N,N')-di-Co(II) unknown clathrate hydrate] (Park et al., 2006), and catena-poly [bis (µ5Benzotriazole-5-carboxylate) -bis(µ2-hydroxo)-tri-Co(II)] (Zhang et al., 2007) The first complex is a binuclear structure and the latter two are 3D porous metal-organic frameworks. However, up to now, the CuII complex of the 1H-benzoimidazole-5,6-dicarboxylic acid ligand (H2L), has not been reported.

As shown in Figure 1, the title compound has a mononuclear structure, in which there exists only one crystallographically independent Cu (II) atom and only one 1H-benzoimidazole-5,6-dicarboxylate ligand, along with five coordinated and five uncoordinated water. Each Cu (II) is six-coordinated with one N atom from the ligand, and five O atoms from water molecules, giving an octahedral coordination geometry. Hydrogen bonds link the mononuclear complex and uncoordinated water molecules into a three-dimensional network.

Related literature top

For related literature, see: Lemos et al. (2004); Park et al. (2006); Zhang et al. (2007).

Experimental top

The title complex was synthesized by carefully layering a solution of Cu(NO3)2.3H2O (24 mg, 0.1 mmol) in MeOH (10 ml) on top of a solution of H2L (27 mg, 0.1 mmol) and LiOH (8.4 mg, 0.2 mmol) in H2O (10 ml) in a test-tube. After about several months at room temperature, green block-shaped single crystals suitable for X-ray investigation appeared at the boundary between MeOH and H2O with a yield of 25%.

Refinement top

H atoms of C were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C,N). The H atoms of the water molecules were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.5 times those of the parent O atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the title complex, showing displacement ellipsoids at the 30% probability level.
Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-κN3)copper(II) pentahydrate top
Crystal data top
[Cu(C9H4N2O4)(H2O)5]·5H2OZ = 2
Mr = 447.84F(000) = 466
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8449 (5) ÅCell parameters from 2164 reflections
b = 11.4381 (8) Åθ = 2.7–27.7°
c = 12.3549 (9) ŵ = 1.28 mm1
α = 78.1549 (1)°T = 296 K
β = 78.6224 (1)°Block, green
γ = 74.8804 (1)°0.24 × 0.24 × 0.24 mm
V = 903.29 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3164 independent reflections
Radiation source: fine-focus sealed tube2774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 87
Tmin = 0.748, Tmax = 0.748k = 139
4648 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0394P)2 + 1.2855P]
where P = (Fo2 + 2Fc2)/3
3164 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 0.32 e Å3
20 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu(C9H4N2O4)(H2O)5]·5H2Oγ = 74.8804 (1)°
Mr = 447.84V = 903.29 (11) Å3
Triclinic, P1Z = 2
a = 6.8449 (5) ÅMo Kα radiation
b = 11.4381 (8) ŵ = 1.28 mm1
c = 12.3549 (9) ÅT = 296 K
α = 78.1549 (1)°0.24 × 0.24 × 0.24 mm
β = 78.6224 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3164 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2774 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.748Rint = 0.018
4648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03420 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
3164 reflectionsΔρmin = 0.54 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu20.40064 (5)0.90276 (3)0.25900 (3)0.01956 (13)
C10.5610 (5)0.7927 (3)0.0504 (2)0.0208 (6)
H1B0.53720.87190.01000.025*
C20.5701 (4)0.6408 (2)0.1857 (2)0.0155 (6)
C30.5523 (4)0.5625 (2)0.2878 (2)0.0164 (6)
H3A0.49080.59330.35350.020*
C40.6288 (4)0.4374 (2)0.2891 (2)0.0164 (6)
C50.7248 (4)0.3904 (3)0.1890 (2)0.0174 (6)
C60.7410 (5)0.4686 (3)0.0879 (2)0.0209 (6)
H6A0.80360.43850.02200.025*
C70.6613 (4)0.5927 (3)0.0878 (2)0.0188 (6)
C80.6183 (4)0.3556 (2)0.4017 (2)0.0181 (6)
C90.7972 (5)0.2539 (3)0.1890 (2)0.0200 (6)
N10.6497 (4)0.6937 (2)0.0032 (2)0.0232 (6)
H1A0.69210.69250.06700.028*
N20.5095 (4)0.7684 (2)0.16013 (19)0.0178 (5)
O10.7832 (3)0.3070 (2)0.43846 (19)0.0333 (6)
O1W0.1811 (3)0.8182 (2)0.36057 (18)0.0231 (5)
H1D0.206 (6)0.780 (3)0.418 (2)0.035*
H1C0.145 (6)0.774 (3)0.331 (3)0.035*
O20.4460 (3)0.3461 (2)0.45410 (18)0.0296 (5)
O2W0.2065 (4)0.9916 (2)0.14521 (19)0.0267 (5)
H2B0.151 (6)0.950 (3)0.122 (3)0.040*
H2A0.119 (5)1.055 (3)0.154 (3)0.040*
O30.6926 (3)0.18604 (18)0.25581 (18)0.0281 (5)
O3W0.6198 (3)0.9979 (2)0.16683 (18)0.0236 (5)
H3B0.652 (6)1.045 (3)0.196 (3)0.035*
H3C0.719 (5)0.957 (3)0.139 (3)0.035*
O40.9510 (3)0.21717 (19)0.12100 (18)0.0296 (5)
O4W0.2824 (5)1.0432 (2)0.3484 (2)0.0410 (7)
H4B0.255 (7)1.113 (3)0.320 (4)0.061*
H4A0.275 (7)1.030 (4)0.416 (2)0.061*
O5W0.6079 (3)0.8194 (2)0.36953 (18)0.0241 (5)
H5B0.647 (6)0.873 (3)0.385 (3)0.036*
H5A0.579 (6)0.775 (3)0.424 (2)0.036*
O6W0.0815 (4)0.4415 (2)0.3683 (2)0.0397 (6)
H6B0.005 (6)0.402 (4)0.403 (4)0.060*
H6C0.164 (6)0.421 (4)0.410 (3)0.060*
O7W0.2891 (4)0.2718 (2)0.2314 (2)0.0330 (5)
H7A0.406 (4)0.257 (4)0.244 (4)0.050*
H7B0.224 (6)0.331 (3)0.262 (3)0.050*
O8W0.9900 (4)0.6813 (2)0.2776 (2)0.0353 (6)
H8B0.874 (4)0.710 (4)0.303 (3)0.053*
H8A1.008 (7)0.609 (3)0.303 (4)0.053*
O9W0.0044 (4)0.8476 (2)0.0862 (2)0.0339 (6)
H9B0.018 (7)0.825 (4)0.027 (3)0.051*
H9A0.013 (7)0.789 (3)0.133 (3)0.051*
O10W0.8011 (4)0.9835 (2)0.4212 (2)0.0312 (5)
H10B0.779 (6)1.053 (3)0.387 (3)0.047*
H10A0.919 (4)0.953 (4)0.402 (3)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu20.0244 (2)0.0145 (2)0.0180 (2)0.00297 (14)0.00237 (14)0.00150 (14)
C10.0287 (16)0.0122 (14)0.0197 (15)0.0042 (12)0.0049 (12)0.0018 (11)
C20.0185 (14)0.0112 (13)0.0165 (14)0.0022 (11)0.0039 (11)0.0021 (11)
C30.0208 (15)0.0161 (14)0.0120 (13)0.0041 (11)0.0004 (11)0.0040 (11)
C40.0193 (14)0.0141 (14)0.0159 (14)0.0041 (11)0.0056 (11)0.0005 (11)
C50.0193 (14)0.0140 (14)0.0183 (14)0.0022 (11)0.0033 (11)0.0031 (11)
C60.0280 (16)0.0184 (15)0.0141 (14)0.0040 (12)0.0024 (12)0.0046 (11)
C70.0242 (15)0.0157 (14)0.0146 (14)0.0038 (12)0.0028 (11)0.0010 (11)
C80.0270 (16)0.0118 (14)0.0153 (14)0.0054 (12)0.0039 (12)0.0000 (11)
C90.0253 (16)0.0148 (14)0.0203 (15)0.0010 (12)0.0084 (12)0.0037 (12)
N10.0372 (15)0.0161 (13)0.0117 (12)0.0040 (11)0.0002 (11)0.0016 (10)
N20.0240 (13)0.0106 (12)0.0168 (12)0.0022 (10)0.0031 (10)0.0002 (9)
O10.0296 (13)0.0388 (14)0.0270 (12)0.0103 (10)0.0113 (10)0.0145 (10)
O1W0.0278 (12)0.0234 (12)0.0173 (11)0.0090 (9)0.0051 (9)0.0038 (9)
O20.0263 (12)0.0315 (13)0.0239 (12)0.0079 (10)0.0016 (9)0.0111 (10)
O2W0.0290 (13)0.0182 (12)0.0315 (12)0.0036 (9)0.0134 (10)0.0038 (10)
O30.0342 (13)0.0142 (11)0.0338 (13)0.0069 (9)0.0013 (10)0.0013 (9)
O3W0.0270 (12)0.0193 (11)0.0253 (12)0.0088 (9)0.0003 (9)0.0050 (9)
O40.0333 (13)0.0177 (11)0.0302 (12)0.0044 (9)0.0016 (10)0.0061 (9)
O4W0.0744 (19)0.0175 (12)0.0255 (13)0.0081 (12)0.0065 (13)0.0079 (11)
O5W0.0322 (12)0.0231 (12)0.0182 (11)0.0122 (10)0.0075 (9)0.0053 (9)
O6W0.0334 (15)0.0358 (15)0.0475 (17)0.0081 (12)0.0107 (12)0.0035 (12)
O7W0.0357 (14)0.0362 (14)0.0265 (12)0.0074 (12)0.0041 (11)0.0054 (10)
O8W0.0307 (13)0.0291 (13)0.0446 (15)0.0055 (11)0.0069 (11)0.0029 (11)
O9W0.0407 (14)0.0334 (14)0.0280 (13)0.0050 (11)0.0076 (11)0.0080 (11)
O10W0.0313 (13)0.0268 (13)0.0305 (13)0.0033 (11)0.0033 (11)0.0007 (10)
Geometric parameters (Å, º) top
Cu2—O4W2.037 (2)C9—O41.248 (4)
Cu2—O2W2.055 (2)C9—O31.261 (4)
Cu2—N22.055 (2)N1—H1A0.8600
Cu2—O1W2.070 (2)O1W—H1D0.78 (2)
Cu2—O5W2.076 (2)O1W—H1C0.80 (2)
Cu2—O3W2.097 (2)O2W—H2B0.80 (3)
C1—N21.322 (4)O2W—H2A0.82 (3)
C1—N11.328 (4)O3W—H3B0.81 (2)
C1—H1B0.9300O3W—H3C0.78 (2)
C2—C31.393 (4)O4W—H4B0.79 (3)
C2—N21.396 (3)O4W—H4A0.81 (3)
C2—C71.397 (4)O5W—H5B0.80 (2)
C3—C41.387 (4)O5W—H5A0.78 (2)
C3—H3A0.9300O6W—H6B0.84 (3)
C4—C51.420 (4)O6W—H6C0.79 (3)
C4—C81.510 (4)O7W—H7A0.81 (3)
C5—C61.382 (4)O7W—H7B0.83 (3)
C5—C91.510 (4)O8W—H8B0.80 (3)
C6—C71.381 (4)O8W—H8A0.81 (3)
C6—H6A0.9300O9W—H9B0.81 (3)
C7—N11.387 (4)O9W—H9A0.79 (3)
C8—O21.248 (4)O10W—H10B0.81 (3)
C8—O11.249 (4)O10W—H10A0.80 (3)
O4W—Cu2—O2W88.82 (10)C6—C7—C2122.3 (3)
O4W—Cu2—N2176.07 (10)N1—C7—C2105.0 (2)
O2W—Cu2—N287.32 (9)O2—C8—O1124.5 (3)
O4W—Cu2—O1W86.06 (10)O2—C8—C4118.2 (2)
O2W—Cu2—O1W92.49 (9)O1—C8—C4117.3 (3)
N2—Cu2—O1W94.83 (9)O4—C9—O3125.0 (3)
O4W—Cu2—O5W90.71 (11)O4—C9—C5117.9 (3)
O2W—Cu2—O5W176.77 (9)O3—C9—C5117.0 (3)
N2—Cu2—O5W93.11 (9)C1—N1—C7107.4 (2)
O1W—Cu2—O5W90.66 (9)C1—N1—H1A126.3
O4W—Cu2—O3W89.28 (10)C7—N1—H1A126.3
O2W—Cu2—O3W89.14 (9)C1—N2—C2104.4 (2)
N2—Cu2—O3W89.94 (9)C1—N2—Cu2122.93 (19)
O1W—Cu2—O3W175.03 (9)C2—N2—Cu2132.25 (19)
O5W—Cu2—O3W87.67 (9)Cu2—O1W—H1D118 (3)
N2—C1—N1113.8 (2)Cu2—O1W—H1C113 (3)
N2—C1—H1B123.1H1D—O1W—H1C106 (4)
N1—C1—H1B123.1Cu2—O2W—H2B117 (3)
C3—C2—N2130.6 (3)Cu2—O2W—H2A123 (3)
C3—C2—C7120.0 (3)H2B—O2W—H2A105 (4)
N2—C2—C7109.4 (2)Cu2—O3W—H3B118 (3)
C4—C3—C2118.3 (3)Cu2—O3W—H3C115 (3)
C4—C3—H3A120.8H3B—O3W—H3C109 (4)
C2—C3—H3A120.8Cu2—O4W—H4B123 (3)
C3—C4—C5120.9 (3)Cu2—O4W—H4A120 (3)
C3—C4—C8117.1 (2)H4B—O4W—H4A116 (5)
C5—C4—C8121.9 (2)Cu2—O5W—H5B107 (3)
C6—C5—C4120.5 (3)Cu2—O5W—H5A122 (3)
C6—C5—C9118.4 (3)H5B—O5W—H5A109 (4)
C4—C5—C9121.0 (3)H6B—O6W—H6C100 (5)
C7—C6—C5117.9 (3)H7A—O7W—H7B107 (4)
C7—C6—H6A121.0H8B—O8W—H8A104 (5)
C5—C6—H6A121.0H9B—O9W—H9A108 (4)
C6—C7—N1132.7 (3)H10B—O10W—H10A107 (4)
N2—C2—C3—C4179.4 (3)C4—C5—C9—O4148.5 (3)
C7—C2—C3—C40.6 (4)C6—C5—C9—O3141.7 (3)
C2—C3—C4—C50.7 (4)C4—C5—C9—O333.8 (4)
C2—C3—C4—C8176.6 (3)N2—C1—N1—C70.4 (4)
C3—C4—C5—C61.1 (4)C6—C7—N1—C1178.6 (3)
C8—C4—C5—C6176.7 (3)C2—C7—N1—C11.0 (3)
C3—C4—C5—C9176.4 (3)N1—C1—N2—C20.5 (3)
C8—C4—C5—C97.9 (4)N1—C1—N2—Cu2172.7 (2)
C4—C5—C6—C70.1 (4)C3—C2—N2—C1178.9 (3)
C9—C5—C6—C7175.5 (3)C7—C2—N2—C11.1 (3)
C5—C6—C7—N1179.2 (3)C3—C2—N2—Cu28.8 (5)
C5—C6—C7—C21.3 (5)C7—C2—N2—Cu2171.1 (2)
C3—C2—C7—C61.6 (5)O2W—Cu2—N2—C147.3 (2)
N2—C2—C7—C6178.3 (3)O1W—Cu2—N2—C1139.6 (2)
C3—C2—C7—N1178.7 (3)O5W—Cu2—N2—C1129.5 (2)
N2—C2—C7—N11.3 (3)O3W—Cu2—N2—C141.8 (2)
C3—C4—C8—O267.2 (4)O2W—Cu2—N2—C2141.6 (3)
C5—C4—C8—O2116.9 (3)O1W—Cu2—N2—C249.4 (3)
C3—C4—C8—O1109.2 (3)O5W—Cu2—N2—C241.6 (3)
C5—C4—C8—O166.7 (4)O3W—Cu2—N2—C2129.2 (3)
C6—C5—C9—O436.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10W—H10A···O1Wi0.80 (3)2.09 (3)2.855 (3)160 (4)
O10W—H10B···O3ii0.81 (3)2.05 (3)2.802 (3)155 (4)
O9W—H9B···O4iii0.81 (3)1.94 (3)2.739 (3)174 (4)
O7W—H7B···O6W0.83 (3)1.95 (3)2.758 (4)166 (4)
O7W—H7A···O30.81 (3)1.94 (3)2.735 (3)165 (4)
O6W—H6C···O20.79 (3)2.03 (3)2.773 (3)156 (5)
O6W—H6B···O1iv0.84 (3)1.96 (3)2.772 (4)162 (5)
O5W—H5A···O2v0.78 (2)1.84 (3)2.611 (3)170 (4)
O5W—H5B···O10W0.80 (2)2.01 (3)2.793 (3)169 (4)
O4W—H4A···O10Wvi0.81 (3)1.96 (3)2.760 (3)168 (5)
O4W—H4B···O7Wii0.79 (3)1.97 (3)2.723 (4)160 (5)
O3W—H3C···O9Wi0.78 (2)2.05 (3)2.820 (3)172 (4)
O3W—H3B···O3ii0.81 (2)2.00 (3)2.800 (3)170 (4)
O2W—H2A···O4vii0.82 (3)1.93 (3)2.709 (3)160 (4)
O2W—H2B···O9W0.80 (3)1.94 (3)2.735 (3)172 (4)
O1W—H1D···O1v0.78 (2)1.85 (3)2.621 (3)170 (4)
N1—H1A···O7Wiii0.861.972.805 (3)163
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+1; (vii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C9H4N2O4)(H2O)5]·5H2O
Mr447.84
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8449 (5), 11.4381 (8), 12.3549 (9)
α, β, γ (°)78.1549 (1), 78.6224 (1), 74.8804 (1)
V3)903.29 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.24 × 0.24 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.748, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
4648, 3164, 2774
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections3164
No. of parameters295
No. of restraints20
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.54

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10W—H10A···O1Wi0.80 (3)2.09 (3)2.855 (3)160 (4)
O10W—H10B···O3ii0.81 (3)2.05 (3)2.802 (3)155 (4)
O9W—H9B···O4iii0.81 (3)1.94 (3)2.739 (3)174 (4)
O7W—H7B···O6W0.83 (3)1.95 (3)2.758 (4)166 (4)
O7W—H7A···O30.81 (3)1.94 (3)2.735 (3)165 (4)
O6W—H6C···O20.79 (3)2.03 (3)2.773 (3)156 (5)
O6W—H6B···O1iv0.84 (3)1.96 (3)2.772 (4)162 (5)
O5W—H5A···O2v0.78 (2)1.84 (3)2.611 (3)170 (4)
O5W—H5B···O10W0.80 (2)2.01 (3)2.793 (3)169 (4)
O4W—H4A···O10Wvi0.81 (3)1.96 (3)2.760 (3)168 (5)
O4W—H4B···O7Wii0.79 (3)1.97 (3)2.723 (4)160 (5)
O3W—H3C···O9Wi0.78 (2)2.05 (3)2.820 (3)172 (4)
O3W—H3B···O3ii0.81 (2)2.00 (3)2.800 (3)170 (4)
O2W—H2A···O4vii0.82 (3)1.93 (3)2.709 (3)160 (4)
O2W—H2B···O9W0.80 (3)1.94 (3)2.735 (3)172 (4)
O1W—H1D···O1v0.78 (2)1.85 (3)2.621 (3)170 (4)
N1—H1A···O7Wiii0.861.972.805 (3)162.5
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+1; (vii) x1, y+1, z.
 

Acknowledgements

This work was supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality.

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLemos, S. S., Deflon, V. M., Bessler, K. E., Abbott, M. P. & Niquet, E. (2004). Transition Met. Chem. 29, 46–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationPark, K. S., Ni, Z., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-M., Hao, Z.-M., Zhang, W.-X. & Chen, X.-M. (2007). Angew. Chem. Int. Ed. 46, 3456–3459.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds