organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­benzo­yl)-3-[4-(tri­fluoro­meth­­oxy)phen­yl]urea

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fangshi.li@njut.edu.cn

(Received 21 May 2008; accepted 29 May 2008; online 7 June 2008)

The title compound, C15H10ClF3N2O3, is considered to belong to a fourth generation of insecticides with properties such as high selectivity, low acute toxicity for mammals and high biological activity. The dihedral angle between the two benzene rings is 59.3 (2)°. Intra­molecular C—H⋯O and N—H⋯O hydrogen bonds are observed. Inter­molecular N—H⋯O hydrogen bonding generates a centrosymmetric dimer. The F atoms are disordered over two positions; the site occupancy factors are 0.52 and 0.48.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Wang et al. (1998[Wang, S., Allan, R. D., Skerritt, J. H. & Kennedy, I. R. (1998). J. Agric. Food Chem. 46, 3330-3338.]); Qiu et al. (12004[Qiu, S. S., Li, X. Z., Zhang, S. H. & Gao, X. F. (2004). J. Xiandai Nongyao. 3, 17-18.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClF3N2O3

  • Mr = 358.70

  • Monoclinic, P 21 /c

  • a = 17.293 (4) Å

  • b = 8.2870 (17) Å

  • c = 11.073 (2) Å

  • β = 101.74 (3)°

  • V = 1553.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.917, Tmax = 0.943

  • 2946 measured reflections

  • 2784 independent reflections

  • 1906 reflections with I > 2σ(I)

  • Rint = 0.012

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.186

  • S = 1.01

  • 2784 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.86 1.95 2.653 (4) 138
N2—H2A⋯O2i 0.86 2.00 2.851 (4) 172
C6—H6A⋯O2 0.93 2.24 2.838 (5) 121
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is generally recognized as an insect growth regulator that interferes with chitin synthesis in target pests causing death or abortive development (Wang et al., 1998). As part of our studies in this area, we report herein the crystal structure of the title compound (I).

In the molecule of (I) (Fig.1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The intramolecular C—H···O and N—H···O hydrogen bonds are observed (Fig. 1, Table 1). Intermolecular N—H···O hydrogen bond generates a cyclic, centrosymmetric hydrogen bonded dimer (Table 1, Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Wang et al. (1998); Qiu et al. (2004).

Experimental top

The title compound, (I), was prepared according to the literature method (Qiu et al., 1981). The crystals suitable for X-ray analysis were obtained by dissolving (I) (0.1 g) in acetonitrile (25 mL) and evaporating the solvent slowly at room temperature for about 6 d.

Refinement top

H atoms were positioned geometrically, C—H = 0.93 Å for aromatic, N—H = 0.86 Å for amido H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.2 for all the H atoms.

Trifloromethyl group was disordered over two sites, occupancies were refined and converged to 0.52 and 0.48, respectively.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are shown by dased lines.
[Figure 2] Fig. 2. The crystal packing diagram with hydrogen bonds drawn as dashed lines.
1-(2-Chlorobenzoyl)-3-[4-(trifluoromethoxy)phenyl]urea top
Crystal data top
C15H10ClF3N2O3F(000) = 728
Mr = 358.70Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.293 (4) Åθ = 10–14°
b = 8.2870 (17) ŵ = 0.30 mm1
c = 11.073 (2) ÅT = 298 K
β = 101.74 (3)°Block, colourless
V = 1553.6 (6) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1906 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.2°, θmin = 1.2°
ω/2θ scansh = 2020
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.917, Tmax = 0.943l = 013
2946 measured reflections3 standard reflections every 200 reflections
2784 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.06P)2 + 3P]
where P = (Fo2 + 2Fc2)/3
2784 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.58 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C15H10ClF3N2O3V = 1553.6 (6) Å3
Mr = 358.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.293 (4) ŵ = 0.30 mm1
b = 8.2870 (17) ÅT = 298 K
c = 11.073 (2) Å0.30 × 0.20 × 0.20 mm
β = 101.74 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1906 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.012
Tmin = 0.917, Tmax = 0.9433 standard reflections every 200 reflections
2946 measured reflections intensity decay: none
2784 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0791 restraint
wR(F2) = 0.186H-atom parameters constrained
S = 1.01Δρmax = 0.58 e Å3
2784 reflectionsΔρmin = 0.38 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl0.39377 (8)0.46678 (16)0.93229 (10)0.0767 (4)
F10.9765 (5)0.8806 (12)0.8631 (10)0.1470.52
F20.9962 (5)0.7066 (11)0.7283 (8)0.1310.52
F31.0673 (5)0.7391 (10)0.9039 (8)0.1270.52
F1'0.9962 (6)0.8363 (13)0.9452 (9)0.1450.48
F2'0.9788 (6)0.7985 (12)0.7564 (10)0.1400.48
F3'1.0763 (4)0.6519 (9)0.8854 (7)0.1110.48
O10.9560 (2)0.6074 (6)0.8858 (4)0.1185 (16)
O20.59902 (15)0.5358 (4)0.5609 (2)0.0661 (8)
O30.50002 (17)0.7159 (4)0.8415 (3)0.0733 (9)
N10.62777 (18)0.6359 (4)0.7569 (3)0.0578 (9)
H1A0.60610.67320.81450.069*
N20.49834 (18)0.6012 (4)0.6534 (3)0.0552 (8)
H2A0.46650.56910.58760.066*
C10.9996 (3)0.7289 (13)0.8574 (9)0.146 (3)
C20.8720 (3)0.6213 (7)0.8485 (5)0.0820 (15)
C30.8311 (3)0.6917 (7)0.9265 (5)0.0849 (16)
H3A0.85730.73531.00100.102*
C40.7488 (3)0.6978 (6)0.8930 (4)0.0742 (13)
H4A0.71940.74660.94450.089*
C50.7113 (2)0.6298 (5)0.7812 (3)0.0570 (10)
C60.7545 (2)0.5566 (6)0.7047 (4)0.0694 (12)
H6A0.72940.50920.63100.083*
C70.8363 (3)0.5553 (7)0.7400 (5)0.0802 (14)
H7A0.86660.50880.68880.096*
C80.5786 (2)0.5883 (5)0.6510 (4)0.0532 (10)
C90.4632 (2)0.6571 (5)0.7445 (4)0.0527 (9)
C100.3755 (2)0.6418 (5)0.7208 (4)0.0539 (10)
C110.3384 (2)0.5638 (5)0.8036 (4)0.0561 (10)
C120.2570 (3)0.5556 (6)0.7844 (5)0.0755 (13)
H12A0.23270.50310.84100.091*
C130.2120 (3)0.6263 (7)0.6803 (5)0.0842 (15)
H13A0.15720.62270.66720.101*
C140.2478 (3)0.7012 (7)0.5968 (5)0.0842 (15)
H14A0.21720.74770.52670.101*
C150.3293 (3)0.7087 (6)0.6157 (4)0.0687 (12)
H15A0.35320.75880.55760.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0925 (9)0.0813 (8)0.0561 (6)0.0109 (7)0.0145 (6)0.0084 (6)
F10.1470.1470.1470.0000.0300.000
F20.1310.1310.1310.0000.0270.000
F30.1270.1270.1270.0000.0260.000
F1'0.1450.1450.1450.0000.0300.000
F2'0.1400.1400.1400.0000.0290.000
F3'0.1110.1110.1110.0000.0230.000
O10.0479 (19)0.170 (4)0.123 (3)0.013 (2)0.017 (2)0.038 (3)
O20.0487 (15)0.092 (2)0.0543 (16)0.0083 (15)0.0024 (13)0.0147 (16)
O30.0656 (18)0.083 (2)0.0648 (18)0.0052 (16)0.0016 (15)0.0225 (17)
N10.0467 (18)0.072 (2)0.0491 (18)0.0096 (16)0.0039 (14)0.0009 (17)
N20.0502 (18)0.064 (2)0.0468 (17)0.0067 (16)0.0008 (14)0.0074 (16)
C10.025 (2)0.234 (10)0.168 (7)0.022 (4)0.005 (3)0.020 (8)
C20.050 (3)0.106 (4)0.080 (3)0.017 (3)0.010 (2)0.024 (3)
C30.056 (3)0.126 (5)0.063 (3)0.028 (3)0.012 (2)0.007 (3)
C40.062 (3)0.097 (4)0.059 (3)0.023 (3)0.002 (2)0.001 (2)
C50.052 (2)0.066 (3)0.048 (2)0.014 (2)0.0026 (18)0.0114 (19)
C60.049 (2)0.089 (3)0.063 (3)0.003 (2)0.004 (2)0.002 (2)
C70.055 (3)0.098 (4)0.084 (3)0.001 (3)0.006 (2)0.004 (3)
C80.049 (2)0.059 (2)0.047 (2)0.0097 (19)0.0009 (17)0.0001 (19)
C90.056 (2)0.046 (2)0.052 (2)0.0018 (18)0.0009 (18)0.0000 (18)
C100.053 (2)0.047 (2)0.058 (2)0.0019 (18)0.0017 (18)0.0064 (19)
C110.063 (2)0.055 (3)0.051 (2)0.0033 (19)0.0140 (19)0.0095 (19)
C120.066 (3)0.082 (3)0.083 (3)0.002 (3)0.027 (3)0.007 (3)
C130.057 (3)0.098 (4)0.097 (4)0.007 (3)0.013 (3)0.011 (3)
C140.071 (3)0.088 (4)0.082 (3)0.022 (3)0.011 (3)0.002 (3)
C150.061 (3)0.077 (3)0.064 (3)0.005 (2)0.003 (2)0.012 (2)
Geometric parameters (Å, º) top
Cl—C111.743 (4)C3—C41.397 (6)
F1—C11.324 (12)C3—H3A0.9300
F2—C11.431 (11)C4—C51.394 (6)
F3—C11.181 (10)C4—H4A0.9300
F1'—C11.327 (12)C5—C61.379 (6)
F2'—C11.244 (11)C6—C71.389 (6)
F3'—C11.447 (10)C6—H6A0.9300
O1—C11.334 (9)C7—H7A0.9300
O1—C21.432 (5)C9—C101.490 (5)
O2—C81.205 (4)C10—C111.382 (6)
O3—C91.233 (4)C10—C151.386 (5)
N1—C81.360 (5)C11—C121.381 (6)
N1—C51.416 (5)C12—C131.383 (7)
N1—H1A0.8600C12—H12A0.9300
N2—C91.361 (5)C13—C141.362 (7)
N2—C81.398 (5)C13—H13A0.9300
N2—H2A0.8600C14—C151.384 (6)
C2—C71.350 (7)C14—H14A0.9300
C2—C31.354 (7)C15—H15A0.9300
C1—O1—C2117.4 (5)C5—C4—H4A120.5
C8—N1—C5126.0 (4)C3—C4—H4A120.5
C8—N1—H1A117.0C6—C5—C4120.8 (4)
C5—N1—H1A117.0C6—C5—N1123.9 (4)
C9—N2—C8129.5 (3)C4—C5—N1115.2 (4)
C9—N2—H2A115.3C5—C6—C7118.6 (4)
C8—N2—H2A115.3C5—C6—H6A120.7
F3—C1—F2'115.9 (9)C7—C6—H6A120.7
F3—C1—F1101.2 (9)C2—C7—C6120.2 (5)
F2'—C1—F164.4 (8)C2—C7—H7A119.9
F3—C1—F1'79.7 (8)C6—C7—H7A119.9
F2'—C1—F1'107.4 (11)O2—C8—N1125.6 (4)
F1—C1—F1'43.2 (6)O2—C8—N2120.2 (3)
F3—C1—O1120.6 (9)N1—C8—N2114.2 (4)
F2'—C1—O1119.2 (7)O3—C9—N2123.4 (4)
F1—C1—O1121.0 (7)O3—C9—C10120.9 (4)
F1'—C1—O1102.8 (8)N2—C9—C10115.7 (3)
F3—C1—F2106.3 (8)C11—C10—C15118.6 (4)
F2'—C1—F238.4 (6)C11—C10—C9121.1 (3)
F1—C1—F2102.6 (9)C15—C10—C9120.4 (4)
F1'—C1—F2145.0 (11)C12—C11—C10121.1 (4)
O1—C1—F2103.1 (8)C12—C11—Cl118.5 (4)
F3—C1—F3'32.4 (5)C10—C11—Cl120.4 (3)
F2'—C1—F3'118.7 (9)C11—C12—C13119.4 (5)
F1—C1—F3'132.9 (8)C11—C12—H12A120.3
F1'—C1—F3'108.3 (8)C13—C12—H12A120.3
O1—C1—F3'98.9 (8)C14—C13—C12120.2 (5)
F2—C1—F3'90.4 (7)C14—C13—H13A119.9
C7—C2—C3122.6 (4)C12—C13—H13A119.9
C7—C2—O1118.5 (5)C13—C14—C15120.5 (5)
C3—C2—O1118.8 (5)C13—C14—H14A119.7
C2—C3—C4118.8 (4)C15—C14—H14A119.7
C2—C3—H3A120.6C14—C15—C10120.3 (5)
C4—C3—H3A120.6C14—C15—H15A119.9
C5—C4—C3119.0 (5)C10—C15—H15A119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.861.952.653 (4)138
N2—H2A···O2i0.862.002.851 (4)172
C6—H6A···O20.932.242.838 (5)121
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10ClF3N2O3
Mr358.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.293 (4), 8.2870 (17), 11.073 (2)
β (°) 101.74 (3)
V3)1553.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.917, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
2946, 2784, 1906
Rint0.012
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.186, 1.01
No. of reflections2784
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.38

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.86001.95002.653 (4)138.00
N2—H2A···O2i0.86002.00002.851 (4)172.00
C6—H6A···O20.93002.24002.838 (5)121.00
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Professor Yuan-wen Wu of Nanjing University of Technology for his kind help with the crystal structure analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationQiu, S. S., Li, X. Z., Zhang, S. H. & Gao, X. F. (2004). J. Xiandai Nongyao. 3, 17–18.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Allan, R. D., Skerritt, J. H. & Kennedy, I. R. (1998). J. Agric. Food Chem. 46, 3330–3338.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds