organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Bis(3-chloro­methyl-4-eth­oxy­phen­yl)propane

aDépartement de Chimie, Faculté des Sciences, 5019 Monastir, Tunisia
*Correspondence e-mail: nejm_1@yahoo.fr

(Received 11 June 2008; accepted 20 June 2008; online 28 June 2008)

The title compound, C21H26Cl2O2, a bis-chloro­methyl derivative of O-ethyl­ated bis­phenol A, exhibits C2 mol­ecular symmetry. It shows a bent conformation with the two benzene rings nearly perpendicular [dihedral angle = 87.17 (6)°].

Related literature

For more information on the synthesis, see: Miyazawa et al. (1999[Miyazawa, A., Suzuki, Y., Sawada, T., Mataka, S. & Tashiro, M. (1999). J. Chem. Res. Synop. 7, 426-427.]). For background to the investigation of new conjugated polymers derived from bis­phenols as potential organic semi-conducting materials, see: Jaballah et al. (2006[Jaballah, N., Trad, H., Majdoub, M., Jouini, M., Roussel, J. & Fave, J. L. (2006). J. Appl. Polym. Sci. 99, 2997-3004.]). For the use of bis-chloro­methyl bis­phenol A ethers for the control of fungal and bacterial organisms, see: Priddy & Hennis (1970[Priddy, D. B. & Hennis, H. E. (1970). US Patent 3 546 299.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26Cl2O2

  • Mr = 381.32

  • Monoclinic, C 2/c

  • a = 13.856 (5) Å

  • b = 15.185 (6) Å

  • c = 10.999 (4) Å

  • β = 118.82 (3)°

  • V = 2027.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 (2) K

  • 0.42 × 0.33 × 0.21 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 2374 measured reflections

  • 1960 independent reflections

  • 1173 reflections with I > 2σ(I)

  • Rint = 0.022

  • 2 standard reflections frequency: 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.118

  • S = 1.02

  • 1960 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

BPAEtCl was synthesized as part of an ongoing program on the investigation of new conjugated polymers derived from bisphenols as potential organic semi-conducting materials (Jaballah et al., 2006). This intermediate is of value in synthetic work inasmuch as the CH2C1 group can be converted to other groups such as CH2CN, CH2OH and CHO. Particularly, the bend-like structure of bisphenol A (BPA) nucleus offers a special interest in metacyclophanes synthesis (Miyazawa et al., 1999). Bis-chloromethyl bisphenol A ethers are also useful as microbicides for control of fungal and bacterial organisms (Priddy & Hennis, 1970). The molecular structure of BPAEtCl is shown in Fig. 1. The two benzene rings are nearly perpendicular, forming a dihedral angle of 87.17 (6)°. The ethoxy group plan [O1—C8—C9] is almost parallel with the benzene ring with the dihedral angle of 6.82 (37)° whereas chloromethyl group plan [C1—C7—Cl] is close to be perpendicular [82.62 (13)°].

Related literature top

For more information on the synthesis, see: Miyazawa et al. (1999). For background to the investigation of new conjugated polymers derived from bisphenols as potential organicsemi-conducting materials, see: Jaballah et al. (2006). For the use of bis-chloromethyl bisphenol A ethers for the control of fungal and bacterial organisms, see: Priddy & Hennis (1970).

Experimental top

BPAEtCl was synthesized in two steps from 4,4'-isopropylidenediphenol [Bisphenol A, BPA]. To a stirred mixture of BPA (10 mmoles) and K2CO3 (40 mmoles) in 20 mL of dimethylformamide, was added dropwise bromoethane (30 mmoles). After stirring for 5 h at room temperature, the reaction mixture was poured into distilled water and extracted with diethyl ether. The extract was washed with distilled water, dried over anhydrous MgSO4, and then evaporated. The resultant crude product was purified by recrystallization from ethanol/water (3/1) to afford the 2,2-bis-(4-ethoxyphenyl)propane [BPAEt] as needle-like white crystals. A mixture of BPAEt (10 mmoles), paraformaldehyde (2.5 g), and 37% aqueous HCl (8.5 mL) in acetic acid (30 mL) was heated at 328 K for 5 h. The resulting mixture was then poured into distilled water and extracted with diethyl ether. The organic layer was washed several times with distilled water and dried over anhydrous MgSO4. After solvent removal and two recrystallizations from hexane, we obtained BPAEtCl as colourless crystals. Yield: 75%; mp: 352–354 K.

Refinement top

Hydrogen atoms were located in a fourier map and refined freely with isotropic thermal parameters.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of BPAEtCl, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. Symmetry code: (i) -x + 1, y, -z + 5/2.
2,2-Bis(3-chloromethyl-4-ethoxyphenyl)propane top
Crystal data top
C21H26Cl2O2F(000) = 808
Mr = 381.32Dx = 1.249 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.856 (5) Åθ = 11.6–15.7°
b = 15.185 (6) ŵ = 0.33 mm1
c = 10.999 (4) ÅT = 293 K
β = 118.82 (3)°Prism, colourless
V = 2027.7 (13) Å30.42 × 0.33 × 0.21 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.2°
Graphite monochromatorh = 1717
non–profiled ω scansk = 618
2374 measured reflectionsl = 113
1960 independent reflections2 standard reflections every 120 min
1173 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.052P)2 + 0.7485P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.25 e Å3
1960 reflectionsΔρmin = 0.21 e Å3
166 parameters
Crystal data top
C21H26Cl2O2V = 2027.7 (13) Å3
Mr = 381.32Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.856 (5) ŵ = 0.33 mm1
b = 15.185 (6) ÅT = 293 K
c = 10.999 (4) Å0.42 × 0.33 × 0.21 mm
β = 118.82 (3)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.022
2374 measured reflections2 standard reflections every 120 min
1960 independent reflections intensity decay: 2%
1173 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
1960 reflectionsΔρmin = 0.21 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
HC20.2827 (17)0.0620 (14)1.052 (2)0.046 (6)*
HC40.5740 (19)0.1686 (14)1.147 (2)0.050 (6)*
H1110.641 (2)0.0223 (19)1.220 (3)0.085 (9)*
H2110.6149 (19)0.0548 (15)1.306 (3)0.052 (6)*
H1C70.124 (2)0.1193 (16)0.880 (3)0.064 (8)*
HC50.4965 (18)0.2588 (15)0.961 (2)0.051 (6)*
H3110.5386 (19)0.0493 (15)1.142 (3)0.056 (6)*
H2C70.126 (2)0.2044 (18)0.786 (3)0.077 (8)*
H2C80.403 (3)0.278 (2)0.719 (3)0.102 (11)*
H1C90.318 (3)0.390 (2)0.568 (4)0.109 (13)*
H2C90.217 (3)0.403 (3)0.598 (4)0.128 (14)*
H3C90.224 (4)0.315 (3)0.524 (5)0.152 (17)*
H1C80.392 (3)0.362 (2)0.807 (4)0.107 (12)*
Cl0.11729 (5)0.08024 (5)0.67435 (7)0.0780 (3)
C100.50.04410 (18)1.250.0424 (7)
O10.28391 (12)0.26525 (10)0.77132 (17)0.0557 (5)
C30.43999 (15)0.10349 (12)1.1219 (2)0.0360 (5)
C10.27565 (15)0.15480 (13)0.9159 (2)0.0395 (5)
C50.45100 (18)0.21933 (13)0.9770 (2)0.0436 (5)
C20.32750 (16)0.10062 (13)1.0324 (2)0.0386 (5)
C40.49939 (17)0.16456 (13)1.0907 (2)0.0420 (5)
C60.33857 (16)0.21428 (12)0.8875 (2)0.0408 (5)
C70.15422 (18)0.14840 (18)0.8252 (3)0.0522 (6)
C110.5796 (2)0.01497 (17)1.2272 (3)0.0600 (8)
C80.3483 (3)0.3195 (2)0.7315 (4)0.0752 (9)
C90.2741 (4)0.3638 (3)0.5969 (4)0.0863 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0520 (4)0.0956 (5)0.0591 (5)0.0027 (3)0.0050 (3)0.0129 (4)
C100.0475 (15)0.0365 (14)0.0313 (17)00.0095 (13)0
O10.0532 (9)0.0566 (9)0.0505 (11)0.0097 (7)0.0195 (8)0.0228 (8)
C30.0406 (10)0.0330 (9)0.0282 (12)0.0002 (7)0.0116 (8)0.0029 (8)
C10.0371 (10)0.0412 (10)0.0358 (12)0.0050 (8)0.0141 (9)0.0017 (9)
C50.0467 (11)0.0390 (10)0.0434 (14)0.0058 (9)0.0204 (10)0.0022 (10)
C20.0382 (10)0.0382 (10)0.0367 (13)0.0020 (8)0.0159 (9)0.0001 (9)
C40.0358 (10)0.0433 (11)0.0363 (13)0.0055 (8)0.0090 (9)0.0046 (9)
C60.0450 (11)0.0383 (10)0.0344 (13)0.0055 (8)0.0154 (9)0.0030 (9)
C70.0400 (11)0.0592 (14)0.0478 (16)0.0077 (10)0.0135 (10)0.0061 (12)
C110.0727 (17)0.0472 (13)0.0393 (16)0.0191 (12)0.0104 (13)0.0055 (12)
C80.0762 (19)0.078 (2)0.071 (2)0.0090 (16)0.0357 (17)0.0314 (17)
C90.102 (3)0.087 (2)0.080 (3)0.027 (2)0.052 (2)0.042 (2)
Geometric parameters (Å, º) top
Cl—C71.808 (3)C5—HC50.95 (2)
C10—C11i1.533 (3)C2—HC20.95 (2)
C10—C111.533 (3)C4—HC40.92 (2)
C10—C3i1.537 (3)C7—H1C70.99 (3)
C10—C31.537 (2)C7—H2C70.95 (3)
O1—C61.368 (2)C11—H1111.06 (3)
O1—C81.430 (3)C11—H2110.97 (2)
C3—C21.386 (3)C11—H3110.98 (3)
C3—C41.388 (3)C8—C91.494 (4)
C1—C61.392 (3)C8—H2C81.04 (3)
C1—C21.395 (3)C8—H1C81.00 (4)
C1—C71.489 (3)C9—H1C90.91 (4)
C5—C41.377 (3)C9—H2C90.99 (4)
C5—C61.387 (3)C9—H3C91.07 (5)
C8—C91.494 (4)
C11i—C10—C11108.4 (3)C1—C7—Cl112.38 (17)
C11i—C10—C3i107.90 (14)C1—C7—H1C7107.3 (15)
C11—C10—C3i112.29 (13)Cl—C7—H1C7106.6 (15)
C11i—C10—C3112.29 (13)C1—C7—H2C7109.6 (16)
C11—C10—C3107.90 (14)Cl—C7—H2C7102.7 (17)
C3i—C10—C3108.1 (2)H1C7—C7—H2C7118 (2)
C6—O1—C8117.78 (18)C10—C11—H111111.7 (16)
C2—C3—C4116.32 (18)C10—C11—H211108.1 (14)
C2—C3—C10123.99 (17)H111—C11—H211109 (2)
C4—C3—C10119.69 (16)C10—C11—H311109.7 (14)
C6—C1—C2119.21 (18)H111—C11—H311109 (2)
C6—C1—C7121.3 (2)H211—C11—H311109.5 (18)
C2—C1—C7119.5 (2)O1—C8—C9109.2 (3)
C4—C5—C6120.0 (2)O1—C8—H2C8107.3 (17)
C4—C5—HC5118.4 (14)C9—C8—H2C8109.7 (19)
C6—C5—HC5121.6 (14)O1—C8—H1C8110 (2)
C3—C2—C1122.58 (19)C9—C8—H1C8113 (2)
C3—C2—HC2119.3 (13)H2C8—C8—H1C8108 (3)
C1—C2—HC2118.1 (13)C8—C9—H1C9107 (2)
C5—C4—C3122.72 (19)C8—C9—H2C9115 (2)
C5—C4—HC4118.3 (14)H1C9—C9—H2C9115 (3)
C3—C4—HC4119.0 (14)C8—C9—H3C9109 (2)
O1—C6—C5123.96 (19)H1C9—C9—H3C9110 (3)
O1—C6—C1116.89 (18)H2C9—C9—H3C9101 (3)
C5—C6—C1119.15 (19)
Symmetry code: (i) x+1, y, z+5/2.

Experimental details

Crystal data
Chemical formulaC21H26Cl2O2
Mr381.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.856 (5), 15.185 (6), 10.999 (4)
β (°) 118.82 (3)
V3)2027.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.42 × 0.33 × 0.21
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2374, 1960, 1173
Rint0.022
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.118, 1.03
No. of reflections1960
No. of parameters166
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJaballah, N., Trad, H., Majdoub, M., Jouini, M., Roussel, J. & Fave, J. L. (2006). J. Appl. Polym. Sci. 99, 2997–3004.  Web of Science CrossRef CAS Google Scholar
First citationMiyazawa, A., Suzuki, Y., Sawada, T., Mataka, S. & Tashiro, M. (1999). J. Chem. Res. Synop. 7, 426–427.  Web of Science CrossRef Google Scholar
First citationPriddy, D. B. & Hennis, H. E. (1970). US Patent 3 546 299.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds