metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Bis(pentane-2,4-dionato)bis­­[2-(4-pyrid­yl)-4,4,5,5-tetra­methyl­imidazoline-1-oxyl 3-oxide]nickel(II)

aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China
*Correspondence e-mail: lujianghao001@yahoo.com.cn

(Received 12 June 2008; accepted 19 June 2008; online 25 June 2008)

In the title compound, [Ni(C5H7O2)2(C12H16N3O2)], the NiII cation is hexa­coordinated by four O and two N atoms, showing a slightly distorted octa­hedral geometry. The NiII cation lies on an inversion centre, as a consequence of which the asymmetric unit comprises one half-mol­ecule. The four O atoms belonging to two pentane-2,4-dionate ligands lie in the equatorial plane and two pyridyl N atoms occupy the axial coordination sites.

Related literature

For related literature, see: Caneschi et al. (1989[Caneschi, A., Gatteschi, D., Renard, J. P., Rey, P. & Sessoli, R. (1989). J. Am. Chem. Soc. 111, 785-786.]); Tsukuda et al. (2002[Tsukuda, T., Suzuki, T. & Kaizaki, S. (2002). J. Chem. Soc. Dalton Trans. pp. 1721-1726.]); Vostrikova et al. (2000[Vostrikova, K. E., Luneau, D., Wernsdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc. 122, 718-719.]); Kuchar et al. (2003[Kuchar, J., Cernak, J., Zak, Z. & Massa, W. (2003). Monogr. Ser. Int. Conf. Coord. Chem., 6, 127-132.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H7O2)2(C12H16N3O2)]

  • Mr = 725.48

  • Triclinic, [P \overline 1]

  • a = 6.9862 (10) Å

  • b = 10.121 (3) Å

  • c = 12.735 (3) Å

  • α = 98.20 (2)°

  • β = 103.21 (2)°

  • γ = 93.08 (2)°

  • V = 864.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.776, Tmax = 0.875

  • 5805 measured reflections

  • 2968 independent reflections

  • 2356 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.00

  • 2968 reflections

  • 229 parameters

  • H-atom parameters not refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O3 2.0239 (17)
Ni1—O4 2.0292 (16)
Ni1—N1 2.154 (2)
O3i—Ni1—O3 180
O3—Ni1—O4 87.77 (7)
O4i—Ni1—O4 180
O3—Ni1—N1 88.32 (7)
O4—Ni1—N1 88.59 (7)
N1—Ni1—N1i 180
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design of different kinds of metal-radical coordination architectures with appropriate organic radicals and coligands has been an important subject during the last decade because of their potential use for molecule-based magnetic materials and optical devices (Caneschi et al., 1989; Tsukuda et al., 2002; Vostrikova et al., 2000; Kuchar et al., 2003). The organic species, such as tridentate nitronyl nitroxide radical, and bidentate nitroxide radical could results in a large number of building blocks with the potential applications. In this paper, we report the structure of the title compound, (I).

The NiII cation is hexacoordinated with four O and two N atoms showing the slightly distorted octahedral geometry (Fig. 1). The NiII cation lies on an inversion centre. The four oxygen atoms belonging to two pentane-2,4-dionate lie in the equatorial plane and the two nitrogen atoms occupy the axial coordination sites. The Ni—N and Ni—O bond lengths are in the range of 2.154 (2)–2.154 (2) and 2.0239 (17)–2.0292 (16) /%A, respectively (Table 1).

Related literature top

For related literature, see: Caneschi et al. (1989); Tsukuda et al. (2002); Vostrikova et al. (2000); Kuchar et al. (2003)

Experimental top

A mixture of nickel(II) acetylacetonate (1 mmoL) and 2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (1 mmoL) in 20 mL methanol was refluxed for several h. The above cooled solution was filterated and the filtrate was kept in the ice box. One week later, green blocks of (I) were obtained with yield of ca 3%. Anal. Calc. for C34H46N6NiO8: C 56.24, H 6.34, N 11.58%; Found: C 56.19, H 6.28, N 11.47%.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) around NiII, drawn with the 30% probability displacement ellipsoids for the non-hydrogen atoms.
Bis(pentane-2,4-dionato)bis[2-(4-pyridyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide]nickel(II) top
Crystal data top
[Ni(C5H7O2)2(C12H16N3O2)]Z = 1
Mr = 725.48F(000) = 384
Triclinic, P1Dx = 1.394 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9862 (10) ÅCell parameters from 2968 reflections
b = 10.121 (3) Åθ = 3.1–25.0°
c = 12.735 (3) ŵ = 0.62 mm1
α = 98.20 (2)°T = 293 K
β = 103.21 (2)°Block, green
γ = 93.08 (2)°0.43 × 0.28 × 0.22 mm
V = 864.1 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2968 independent reflections
Radiation source: fine-focus sealed tube2356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 68
Tmin = 0.776, Tmax = 0.876k = 1212
5805 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters not refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0577P)2]
where P = (Fo2 + 2Fc2)/3
2968 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ni(C5H7O2)2(C12H16N3O2)]γ = 93.08 (2)°
Mr = 725.48V = 864.1 (3) Å3
Triclinic, P1Z = 1
a = 6.9862 (10) ÅMo Kα radiation
b = 10.121 (3) ŵ = 0.62 mm1
c = 12.735 (3) ÅT = 293 K
α = 98.20 (2)°0.43 × 0.28 × 0.22 mm
β = 103.21 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2968 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2356 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 0.876Rint = 0.032
5805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.101H-atom parameters not refined
S = 1.01Δρmax = 0.38 e Å3
2968 reflectionsΔρmin = 0.51 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00000.00000.01842 (16)
C10.6315 (4)0.1982 (3)0.4503 (2)0.0171 (5)
C20.4941 (4)0.1511 (2)0.3460 (2)0.0157 (5)
C30.5524 (4)0.0953 (3)0.2533 (2)0.0182 (5)
H30.68520.08630.25620.022*
C40.4134 (4)0.0538 (2)0.1578 (2)0.0169 (5)
H40.45510.01750.09650.020*
C50.1699 (4)0.1168 (2)0.2385 (2)0.0163 (5)
H50.03600.12430.23340.020*
C60.2972 (3)0.1614 (2)0.33692 (19)0.0159 (5)
H60.25110.19800.39670.019*
C70.9190 (3)0.2686 (2)0.58605 (18)0.0148 (5)
C80.7425 (4)0.2983 (3)0.6346 (2)0.0181 (5)
C90.6895 (4)0.4438 (3)0.6355 (2)0.0260 (6)
H9A0.69550.47110.56710.039*
H9B0.78160.50130.69380.039*
H9C0.55850.45000.64620.039*
C100.7513 (4)0.2543 (3)0.7443 (2)0.0232 (6)
H10A0.63330.27470.76740.035*
H10B0.86400.30080.79710.035*
H10C0.76230.15950.73780.035*
C111.0773 (3)0.3828 (3)0.6102 (2)0.0186 (6)
H11A1.17580.35990.57080.028*
H11B1.13720.39980.68720.028*
H11C1.02010.46160.58820.028*
C121.0024 (4)0.1370 (3)0.6126 (2)0.0186 (5)
H12A0.89650.06720.59670.028*
H12B1.06840.14800.68860.028*
H12C1.09450.11330.56900.028*
C130.1318 (4)0.3856 (3)0.1296 (2)0.0236 (6)
H13A0.27200.38320.10170.035*
H13B0.07160.47310.12950.035*
H13C0.10420.36610.20280.035*
C140.0496 (4)0.2828 (2)0.05844 (19)0.0169 (5)
C150.1142 (4)0.3210 (2)0.0228 (2)0.0193 (6)
H150.16810.40940.04470.023*
C160.2042 (4)0.2369 (2)0.0434 (2)0.0183 (6)
C170.3724 (4)0.2937 (3)0.0815 (2)0.0257 (6)
H17A0.48770.24890.05600.039*
H17B0.39810.38770.05310.039*
H17C0.34000.28120.15990.039*
N10.2240 (3)0.06298 (19)0.14880 (16)0.0147 (4)
N20.5853 (3)0.2130 (2)0.54884 (17)0.0188 (5)
N30.8188 (3)0.2419 (2)0.46714 (16)0.0154 (5)
O10.4272 (2)0.1725 (2)0.56916 (14)0.0276 (5)
O20.9117 (2)0.25109 (18)0.39294 (14)0.0212 (4)
O30.1365 (2)0.16536 (16)0.03800 (13)0.0173 (4)
O40.1568 (2)0.11205 (17)0.07687 (13)0.0183 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0180 (3)0.0196 (3)0.0157 (3)0.00152 (18)0.00049 (19)0.00216 (19)
C10.0170 (13)0.0237 (14)0.0112 (13)0.0031 (10)0.0052 (10)0.0011 (10)
C20.0157 (13)0.0186 (13)0.0127 (13)0.0000 (10)0.0026 (10)0.0040 (10)
C30.0149 (13)0.0234 (14)0.0164 (14)0.0020 (10)0.0039 (11)0.0028 (11)
C40.0173 (13)0.0198 (13)0.0143 (13)0.0030 (10)0.0041 (10)0.0039 (10)
C50.0133 (12)0.0192 (13)0.0180 (14)0.0022 (10)0.0045 (10)0.0069 (10)
C60.0166 (13)0.0217 (13)0.0100 (13)0.0024 (10)0.0039 (10)0.0026 (10)
C70.0139 (12)0.0242 (14)0.0047 (12)0.0012 (10)0.0009 (10)0.0000 (10)
C80.0134 (13)0.0279 (15)0.0114 (13)0.0040 (10)0.0003 (10)0.0018 (11)
C90.0217 (14)0.0332 (16)0.0218 (15)0.0111 (12)0.0025 (11)0.0012 (12)
C100.0186 (14)0.0393 (17)0.0112 (14)0.0027 (11)0.0023 (11)0.0046 (12)
C110.0155 (13)0.0246 (14)0.0144 (14)0.0020 (10)0.0016 (10)0.0017 (11)
C120.0148 (13)0.0241 (14)0.0170 (14)0.0024 (10)0.0039 (10)0.0034 (11)
C130.0270 (15)0.0192 (14)0.0214 (15)0.0067 (11)0.0002 (11)0.0001 (11)
C140.0179 (13)0.0193 (14)0.0094 (13)0.0045 (10)0.0062 (10)0.0029 (10)
C150.0221 (14)0.0155 (13)0.0168 (14)0.0003 (10)0.0029 (11)0.0035 (10)
C160.0165 (13)0.0207 (14)0.0144 (13)0.0002 (10)0.0061 (10)0.0087 (10)
C170.0190 (14)0.0257 (15)0.0308 (16)0.0023 (11)0.0009 (12)0.0093 (12)
N10.0183 (11)0.0148 (11)0.0113 (11)0.0021 (8)0.0037 (9)0.0019 (8)
N20.0099 (11)0.0332 (13)0.0128 (12)0.0012 (9)0.0023 (9)0.0030 (9)
N30.0096 (10)0.0243 (12)0.0112 (11)0.0003 (8)0.0012 (9)0.0014 (8)
O10.0109 (9)0.0545 (13)0.0181 (10)0.0025 (8)0.0046 (8)0.0083 (9)
O20.0145 (9)0.0369 (11)0.0126 (9)0.0002 (8)0.0058 (7)0.0010 (8)
O30.0157 (9)0.0184 (9)0.0159 (9)0.0034 (7)0.0005 (7)0.0022 (7)
O40.0172 (9)0.0214 (10)0.0140 (9)0.0006 (7)0.0002 (7)0.0027 (7)
Geometric parameters (Å, º) top
Ni1—O3i2.0239 (17)C9—H9B0.9600
Ni1—O32.0239 (17)C9—H9C0.9600
Ni1—O4i2.0292 (16)C10—H10A0.9600
Ni1—O42.0292 (16)C10—H10B0.9600
Ni1—N12.154 (2)C10—H10C0.9600
Ni1—N1i2.154 (2)C11—H11A0.9600
C1—N31.318 (3)C11—H11B0.9600
C1—N21.355 (3)C11—H11C0.9600
C1—C21.450 (3)C12—H12A0.9600
C2—C61.364 (3)C12—H12B0.9600
C2—C31.390 (4)C12—H12C0.9600
C3—C41.366 (4)C13—C141.506 (3)
C3—H30.9300C13—H13A0.9600
C4—N11.312 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—N11.337 (3)C14—O31.269 (3)
C5—C61.361 (3)C14—C151.380 (4)
C5—H50.9300C15—C161.388 (4)
C6—H60.9300C15—H150.9300
C7—N31.495 (3)C16—O41.275 (3)
C7—C111.503 (3)C16—C171.488 (3)
C7—C81.526 (3)C17—H17A0.9600
C7—C121.533 (3)C17—H17B0.9600
C8—N21.491 (3)C17—H17C0.9600
C8—C101.515 (3)N2—O11.252 (3)
C8—C91.537 (4)N3—O21.273 (3)
C9—H9A0.9600
O3i—Ni1—O3180.00 (12)C8—C10—H10A109.5
O3i—Ni1—O4i87.77 (7)C8—C10—H10B109.5
O3—Ni1—O4i92.23 (7)H10A—C10—H10B109.5
O3i—Ni1—O492.23 (7)C8—C10—H10C109.5
O3—Ni1—O487.77 (7)H10A—C10—H10C109.5
O4i—Ni1—O4180.00 (9)H10B—C10—H10C109.5
O3i—Ni1—N191.68 (7)C7—C11—H11A109.5
O3—Ni1—N188.33 (7)C7—C11—H11B109.5
O4i—Ni1—N191.41 (7)H11A—C11—H11B109.5
O4—Ni1—N188.59 (7)C7—C11—H11C109.5
O3i—Ni1—N1i88.32 (7)H11A—C11—H11C109.5
O3—Ni1—N1i91.67 (7)H11B—C11—H11C109.5
O4i—Ni1—N1i88.59 (7)C7—C12—H12A109.5
O4—Ni1—N1i91.41 (7)C7—C12—H12B109.5
N1—Ni1—N1i180.00 (8)H12A—C12—H12B109.5
N3—C1—N2107.4 (2)C7—C12—H12C109.5
N3—C1—C2127.1 (2)H12A—C12—H12C109.5
N2—C1—C2125.4 (2)H12B—C12—H12C109.5
C6—C2—C3117.6 (2)C14—C13—H13A109.5
C6—C2—C1119.1 (2)C14—C13—H13B109.5
C3—C2—C1123.3 (2)H13A—C13—H13B109.5
C4—C3—C2119.6 (2)C14—C13—H13C109.5
C4—C3—H3120.2H13A—C13—H13C109.5
C2—C3—H3120.2H13B—C13—H13C109.5
N1—C4—C3123.0 (2)O3—C14—C15125.1 (2)
N1—C4—H4118.5O3—C14—C13116.2 (2)
C3—C4—H4118.5C15—C14—C13118.7 (2)
N1—C5—C6124.5 (2)C14—C15—C16124.7 (2)
N1—C5—H5117.8C14—C15—H15117.7
C6—C5—H5117.8C16—C15—H15117.7
C5—C6—C2118.5 (2)O4—C16—C15126.3 (2)
C5—C6—H6120.7O4—C16—C17114.7 (2)
C2—C6—H6120.7C15—C16—C17118.9 (2)
N3—C7—C11110.84 (19)C16—C17—H17A109.5
N3—C7—C8100.11 (18)C16—C17—H17B109.5
C11—C7—C8114.5 (2)H17A—C17—H17B109.5
N3—C7—C12105.69 (19)C16—C17—H17C109.5
C11—C7—C12112.2 (2)H17A—C17—H17C109.5
C8—C7—C12112.4 (2)H17B—C17—H17C109.5
N2—C8—C798.88 (19)C4—N1—C5116.8 (2)
N2—C8—C10109.8 (2)C4—N1—Ni1124.33 (16)
C7—C8—C10115.3 (2)C5—N1—Ni1118.92 (16)
N2—C8—C9106.9 (2)O1—N2—C1127.2 (2)
C7—C8—C9113.5 (2)O1—N2—C8121.2 (2)
C10—C8—C9111.4 (2)C1—N2—C8111.4 (2)
C8—C9—H9A109.5O2—N3—C1125.5 (2)
C8—C9—H9B109.5O2—N3—C7122.47 (18)
H9A—C9—H9B109.5C1—N3—C7111.82 (19)
C8—C9—H9C109.5C14—O3—Ni1122.70 (15)
H9A—C9—H9C109.5C16—O4—Ni1121.69 (15)
H9B—C9—H9C109.5
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C5H7O2)2(C12H16N3O2)]
Mr725.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.9862 (10), 10.121 (3), 12.735 (3)
α, β, γ (°)98.20 (2), 103.21 (2), 93.08 (2)
V3)864.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.776, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
5805, 2968, 2356
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.01
No. of reflections2968
No. of parameters229
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.38, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O3i2.0239 (17)Ni1—N12.154 (2)
Ni1—O4i2.0292 (16)
O3i—Ni1—O3180.00 (12)O3i—Ni1—N191.68 (7)
O3i—Ni1—O4i87.77 (7)O4i—Ni1—N191.41 (7)
O4i—Ni1—O4180.00 (9)N1—Ni1—N1i180.00 (8)
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank the National Ministry of Science and Technology of China for support (grant No. 2001CB6105-07).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaneschi, A., Gatteschi, D., Renard, J. P., Rey, P. & Sessoli, R. (1989). J. Am. Chem. Soc. 111, 785–786.  CrossRef CAS Web of Science Google Scholar
First citationKuchar, J., Cernak, J., Zak, Z. & Massa, W. (2003). Monogr. Ser. Int. Conf. Coord. Chem., 6, 127-132.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsukuda, T., Suzuki, T. & Kaizaki, S. (2002). J. Chem. Soc. Dalton Trans. pp. 1721–1726.  Web of Science CSD CrossRef Google Scholar
First citationVostrikova, K. E., Luneau, D., Wernsdorfer, W., Rey, P. & Verdaguer, M. (2000). J. Am. Chem. Soc. 122, 718–719.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds