metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(1H-imidazole-κN3)nickel(II) bis­­(2,4-di­bromo-6-formyl­phenolate) N,N-di­methyl­formamide disolvate

aDepartment of Chemistry, Xiaogan University, Xiaogan, Hubei 432000, People's Republic of China
*Correspondence e-mail: dy9802@126.com

(Received 15 April 2008; accepted 23 June 2008; online 28 June 2008)

In the cation of the title compound, [Ni(C3H4N2)6](C7H3Br2O2)2·2C3H7NO, the NiII ion lies on an inversion center and is coordinated in a slightly distorted octa­hedral environment by six N atoms from six imidazole ligands. In the crystal structure, cations, anions and solvent mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into one-dimensional chains along [010]. In addition, the crystal structure is stabilized by weak C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For related literature, see: Gelman et al. (2002[Gelman, D., Dechert, S., Schumann, H. & Blum, J. (2002). Inorg. Chim. Acta, 334, 149-158.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H4N2)6](C7H3Br2O2)2·2C3H7NO

  • Mr = 1171.22

  • Monoclinic, P 21 /c

  • a = 14.7271 (13) Å

  • b = 9.0221 (8) Å

  • c = 18.1143 (16) Å

  • β = 100.408 (2)°

  • V = 2367.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.84 mm−1

  • T = 292 (2) K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.308, Tmax = 0.392 (expected range = 0.365–0.464)

  • 13477 measured reflections

  • 5147 independent reflections

  • 3646 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.01

  • 5147 reflections

  • 288 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N5 2.121 (2)
Ni1—N3 2.128 (2)
Ni1—N1 2.138 (2)
N5—Ni1—N5i 180
N5—Ni1—N3i 91.41 (9)
N5—Ni1—N3 88.59 (9)
N3i—Ni1—N3 180
N5—Ni1—N1i 89.86 (9)
N3—Ni1—N1i 91.48 (9)
N5—Ni1—N1 90.14 (9)
N3—Ni1—N1 88.52 (9)
N1i—Ni1—N1 180
Symmetry code: (i) -x+1, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3ii 0.86 1.92 2.764 (5) 169
N4—H4A⋯O2iii 0.86 1.85 2.703 (3) 170
N6—H6A⋯O2iv 0.86 1.97 2.772 (3) 155
C7—H7⋯N1i 0.93 2.57 3.076 (4) 115
C8—H8⋯O1v 0.93 2.59 3.264 (5) 130
C3—H3⋯N3 0.93 2.57 3.053 (4) 113
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to the weak coordination strength of dibromosalicylaldehydenate anions with transition metals, the dibromosalicylaldehydenate usually acts as the counterbalance of the charge. Herein, we report the crystal structure of such a compound, [Ni(Im)6](DBSH)2 2DMF, (I), (Im = imidazole; H2DBSH =3,5-dibromosalicylaldehyde; DMF =N,N-dimethylformamide). The molecular structure of (I) is shown in Fig.1. The NiII ion lying on an inversion center has a distorted octahedral geometry being coordinated by six N atoms from six imidazole ligands. Atoms N3, N3i, N5 & N5icomprise the equatorial plane, whereas the other two N atoms (N1 & N1i) occupy the axial positions (symmetry code as is Table 1). The Ni—N distances (Table 1), and the average Ni—N bond length of 2.12 Å, are longer than the Ni—N distances in [Ni(nap)(bip)](Cl)(nap = 1-naphthyl; bip =2,2'-bipyridine-N,N'; Ni—N 1.919 (8) Å) (Gelman et al., 2002). As shown in Fig.2, an organic cation layer is linked to an inorganic anionic layer through a series of N—H···O, C—H···O and C—H···N hydrogen bonds (Table 2), and adjacent 3,5-dibromosalicylaldehydenate anions are antiparallel. The hydrogen bonds stabilize the crystal structure.

Related literature top

For related literature, see: Gelman et al. (2002).

Experimental top

The title compound was prepared by adding Ni(Ac)2.2H2O (0.110 g, 0.5 mmol) to a solution of H2(DBSH) 0.122 mg (0.5 mmol) in methanol (20 mL) and DMF (20 ml). After stirring the mixture for 2 h, the solution was filtered and kept for several days at ambient temperature to evaporate. Brown block-like crystals were obtained.

Refinement top

All H atoms were placed in geometrically idealized positions and refined in the riding- model approximation, with N-H = 0.86 Å and C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level [symmetry code: (i) -x+1, -y, -z]. H atoms have been omitted.
[Figure 2] Fig. 2. Part of the crystal structure showing hydrogen bonds as dashed lines.
Hexkis(1H-imidazole-κN3)nickel(II) bis(2,4-dibromo-6-formylphenolate) N,N-dimethylformamide disolvate top
Crystal data top
[Ni(C3H4N2)6](C7H3Br2O2)2·2C3H7NOF(000) = 1172
Mr = 1171.22Dx = 1.643 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3743 reflections
a = 14.7271 (13) Åθ = 2.3–25.2°
b = 9.0221 (8) ŵ = 3.84 mm1
c = 18.1143 (16) ÅT = 292 K
β = 100.408 (2)°Block, brown
V = 2367.2 (4) Å30.25 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
5147 independent reflections
Radiation source: fine-focus sealed tube3646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1810
Tmin = 0.309, Tmax = 0.392k = 1110
13477 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0625P)2]
where P = (Fo2 + 2Fc2)/3
5147 reflections(Δ/σ)max = 0.001
288 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C3H4N2)6](C7H3Br2O2)2·2C3H7NOV = 2367.2 (4) Å3
Mr = 1171.22Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.7271 (13) ŵ = 3.84 mm1
b = 9.0221 (8) ÅT = 292 K
c = 18.1143 (16) Å0.25 × 0.20 × 0.20 mm
β = 100.408 (2)°
Data collection top
Bruker SMART CCD
diffractometer
5147 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3646 reflections with I > 2σ(I)
Tmin = 0.309, Tmax = 0.392Rint = 0.031
13477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 0.57 e Å3
5147 reflectionsΔρmin = 0.32 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.03274 (14)
Br10.24272 (2)0.17200 (5)0.27116 (2)0.06303 (15)
Br20.11882 (4)0.03677 (8)0.12533 (3)0.1107 (2)
N10.52342 (17)0.0719 (3)0.11435 (13)0.0402 (6)
N20.5794 (2)0.0782 (4)0.23540 (15)0.0586 (8)
H2A0.60970.05240.27860.070*
N30.56038 (16)0.2073 (3)0.03727 (13)0.0393 (6)
N40.6664 (2)0.3744 (3)0.07883 (15)0.0524 (7)
H4A0.71920.41750.08900.063*
N50.36975 (16)0.0871 (3)0.01215 (13)0.0379 (6)
N60.25325 (17)0.2412 (3)0.00608 (16)0.0487 (7)
H6A0.21420.30530.02790.058*
C160.0057 (2)0.0903 (4)0.41722 (18)0.0451 (8)
H160.04030.09230.45980.054*
N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)
O10.0693 (3)0.1323 (4)0.42179 (16)0.0882 (9)
O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)
O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)
C10.4906 (2)0.1939 (4)0.1457 (2)0.0545 (9)
H10.45060.26350.11950.065*
C20.5247 (3)0.1991 (5)0.2203 (2)0.0647 (10)
H20.51300.27100.25420.078*
C30.5773 (2)0.0056 (4)0.17004 (18)0.0498 (8)
H30.61000.08090.16510.060*
C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)
H40.69160.18580.02640.056*
C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)
H50.57610.51290.11920.073*
C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)
H60.45860.32850.07190.062*
C70.3228 (2)0.1833 (3)0.03379 (18)0.0434 (7)
H70.33670.20820.08030.052*
C80.2548 (2)0.1816 (4)0.0622 (2)0.0590 (9)
H80.21490.20210.09520.071*
C90.3262 (2)0.0860 (4)0.07290 (19)0.0522 (8)
H90.34350.02770.11540.063*
C100.1241 (2)0.0919 (4)0.27542 (18)0.0461 (7)
C110.1103 (2)0.0322 (3)0.34538 (18)0.0400 (7)
C120.0195 (2)0.0232 (3)0.34397 (18)0.0455 (8)
C130.0480 (2)0.0201 (4)0.2791 (2)0.0546 (9)
H130.10670.05730.28010.066*
C140.0282 (3)0.0373 (4)0.2142 (2)0.0584 (9)
C150.0579 (2)0.0958 (4)0.21212 (18)0.0565 (9)
H150.07070.13740.16810.068*
C190.2451 (3)0.6031 (5)0.1056 (2)0.0727 (11)
H190.21950.57490.05690.087*
C170.2366 (4)0.7550 (7)0.2115 (3)0.1150 (19)
H17A0.19150.72830.24140.173*
H17B0.24550.86040.21340.173*
H17C0.29400.70650.23080.173*
C180.1235 (4)0.7834 (6)0.0939 (3)0.1070 (17)
H18A0.11260.75160.04250.161*
H18B0.13320.88860.09610.161*
H18C0.07100.75900.11620.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0284 (3)0.0338 (3)0.0357 (3)0.0004 (2)0.0047 (2)0.0001 (2)
Br10.0482 (2)0.0825 (3)0.0575 (2)0.01576 (18)0.00701 (17)0.00634 (18)
Br20.0836 (4)0.1536 (5)0.0743 (3)0.0336 (3)0.0404 (3)0.0199 (3)
N10.0382 (14)0.0433 (15)0.0396 (14)0.0043 (12)0.0087 (11)0.0020 (12)
N20.067 (2)0.071 (2)0.0378 (15)0.0125 (17)0.0083 (14)0.0040 (15)
N30.0374 (14)0.0380 (14)0.0418 (14)0.0036 (11)0.0047 (11)0.0010 (11)
N40.0472 (17)0.0496 (17)0.0562 (17)0.0136 (13)0.0017 (13)0.0045 (14)
N50.0311 (13)0.0386 (14)0.0442 (14)0.0012 (10)0.0070 (11)0.0019 (11)
N60.0337 (14)0.0465 (16)0.0626 (17)0.0100 (12)0.0001 (12)0.0058 (14)
C160.0262 (15)0.059 (2)0.0451 (18)0.0011 (15)0.0081 (13)0.0160 (16)
N80.088 (3)0.061 (2)0.069 (2)0.0127 (19)0.0011 (19)0.0037 (18)
O10.111 (3)0.091 (2)0.0664 (18)0.015 (2)0.0265 (18)0.0002 (16)
O20.0361 (12)0.0528 (14)0.0436 (12)0.0005 (9)0.0051 (10)0.0011 (10)
O30.099 (3)0.093 (2)0.079 (2)0.002 (2)0.0024 (19)0.0033 (18)
C10.050 (2)0.056 (2)0.058 (2)0.0017 (16)0.0107 (16)0.0111 (17)
C20.070 (3)0.075 (3)0.053 (2)0.004 (2)0.0205 (19)0.019 (2)
C30.054 (2)0.055 (2)0.0405 (17)0.0034 (16)0.0089 (15)0.0004 (16)
C40.0444 (19)0.047 (2)0.0474 (18)0.0039 (15)0.0072 (14)0.0012 (16)
C50.061 (2)0.042 (2)0.077 (3)0.0013 (17)0.005 (2)0.0146 (19)
C60.0444 (19)0.0440 (19)0.066 (2)0.0017 (15)0.0070 (16)0.0112 (16)
C70.0353 (16)0.0476 (19)0.0443 (17)0.0019 (14)0.0006 (13)0.0022 (15)
C80.050 (2)0.067 (2)0.066 (2)0.0175 (18)0.0270 (18)0.0084 (19)
C90.050 (2)0.055 (2)0.055 (2)0.0130 (16)0.0214 (16)0.0123 (16)
C100.0384 (17)0.0481 (19)0.0507 (18)0.0033 (14)0.0051 (14)0.0018 (15)
C110.0319 (16)0.0354 (17)0.0498 (18)0.0041 (12)0.0002 (13)0.0057 (13)
C120.0368 (17)0.048 (2)0.0504 (19)0.0013 (14)0.0029 (14)0.0005 (15)
C130.0382 (19)0.057 (2)0.064 (2)0.0085 (15)0.0036 (16)0.0035 (17)
C140.052 (2)0.065 (2)0.050 (2)0.0074 (17)0.0156 (16)0.0011 (17)
C150.059 (2)0.061 (2)0.0443 (18)0.0076 (18)0.0037 (16)0.0047 (17)
C190.088 (3)0.068 (3)0.058 (2)0.020 (2)0.004 (2)0.002 (2)
C170.147 (5)0.104 (4)0.090 (4)0.009 (4)0.010 (3)0.022 (3)
C180.108 (4)0.073 (3)0.126 (4)0.000 (3)0.015 (3)0.004 (3)
Geometric parameters (Å, º) top
Ni1—N52.121 (2)O2—C111.282 (4)
Ni1—N5i2.121 (2)O3—C191.224 (5)
Ni1—N3i2.128 (2)C1—C21.355 (5)
Ni1—N32.128 (2)C1—H10.9300
Ni1—N1i2.138 (2)C2—H20.9300
Ni1—N12.138 (2)C3—H30.9300
Br1—C101.905 (3)C4—H40.9300
Br1—H83.1509C5—C61.351 (5)
Br2—C141.896 (3)C5—H50.9300
N1—C31.309 (4)C6—H60.9300
N1—C11.366 (4)C7—H70.9300
N2—C31.348 (4)C8—C91.346 (5)
N2—C21.354 (5)C8—H80.9300
N2—H2A0.8600C9—H90.9300
N3—C41.312 (4)C10—C151.365 (4)
N3—C61.362 (4)C10—C111.425 (4)
N4—C41.343 (4)C11—C121.424 (4)
N4—C51.357 (4)C12—C131.396 (5)
N4—H4A0.8600C13—C141.364 (5)
N5—C71.310 (4)C13—H130.9300
N5—C91.370 (4)C14—C151.381 (5)
N6—C71.327 (4)C15—H150.9300
N6—C81.345 (4)C19—H190.9300
N6—H6A0.8600C17—H17A0.9600
C16—O11.028 (4)C17—H17B0.9600
C16—C121.563 (5)C17—H17C0.9600
C16—H160.9300C18—H18A0.9600
N8—C191.290 (6)C18—H18B0.9600
N8—C181.446 (6)C18—H18C0.9600
N8—C171.450 (6)
N5—Ni1—N5i180N3—C4—H4124.0
N5—Ni1—N3i91.41 (9)N4—C4—H4124.0
N5i—Ni1—N3i88.59 (9)C6—C5—N4106.5 (3)
N5—Ni1—N388.59 (9)C6—C5—H5126.7
N5i—Ni1—N391.41 (9)N4—C5—H5126.7
N3i—Ni1—N3180C5—C6—N3110.0 (3)
N5—Ni1—N1i89.86 (9)C5—C6—H6125.0
N5i—Ni1—N1i90.14 (9)N3—C6—H6125.0
N3i—Ni1—N1i88.52 (9)N5—C7—N6112.0 (3)
N3—Ni1—N1i91.48 (9)N5—C7—H7124.0
N5—Ni1—N190.14 (9)N6—C7—H7124.0
N5i—Ni1—N189.86 (9)N6—C8—C9105.8 (3)
N3i—Ni1—N191.48 (9)N6—C8—H8127.1
N3—Ni1—N188.52 (9)C9—C8—H8127.1
N1i—Ni1—N1180C8—C9—N5110.3 (3)
C10—Br1—H896.9C8—C9—H9124.9
C3—N1—C1105.0 (3)N5—C9—H9124.9
C3—N1—Ni1125.3 (2)C15—C10—C11124.2 (3)
C1—N1—Ni1129.8 (2)C15—C10—Br1118.5 (3)
C3—N2—C2107.2 (3)C11—C10—Br1117.3 (2)
C3—N2—H2A126.4O2—C11—C12122.9 (3)
C2—N2—H2A126.4O2—C11—C10123.4 (3)
C4—N3—C6105.0 (3)C12—C11—C10113.7 (3)
C4—N3—Ni1126.5 (2)C13—C12—C11122.1 (3)
C6—N3—Ni1127.9 (2)C13—C12—C16118.7 (3)
C4—N4—C5106.5 (3)C11—C12—C16119.2 (3)
C4—N4—H4A126.8C14—C13—C12120.2 (3)
C5—N4—H4A126.8C14—C13—H13119.9
C7—N5—C9104.2 (3)C12—C13—H13119.9
C7—N5—Ni1124.2 (2)C13—C14—C15120.6 (3)
C9—N5—Ni1130.1 (2)C13—C14—Br2120.2 (3)
C7—N6—C8107.7 (3)C15—C14—Br2119.1 (3)
C7—N6—H6A126.1C10—C15—C14119.2 (3)
C8—N6—H6A126.1C10—C15—H15120.4
O1—C16—C12124.8 (3)C14—C15—H15120.4
O1—C16—H16117.6O3—C19—N8126.5 (4)
C12—C16—H16117.6O3—C19—H19116.7
C19—N8—C18122.5 (4)N8—C19—H19116.7
C19—N8—C17120.4 (4)N8—C17—H17A109.5
C18—N8—C17117.0 (4)N8—C17—H17B109.5
C2—C1—N1110.3 (3)H17A—C17—H17B109.5
C2—C1—H1124.8N8—C17—H17C109.5
N1—C1—H1124.8H17A—C17—H17C109.5
N2—C2—C1105.9 (3)H17B—C17—H17C109.5
N2—C2—H2127.1N8—C18—H18A109.5
C1—C2—H2127.1N8—C18—H18B109.5
N1—C3—N2111.7 (3)H18A—C18—H18B109.5
N1—C3—H3124.2N8—C18—H18C109.5
N2—C3—H3124.2H18A—C18—H18C109.5
N3—C4—N4112.1 (3)H18B—C18—H18C109.5
N5—Ni1—N1—C3102.9 (3)C4—N4—C5—C60.1 (4)
N5i—Ni1—N1—C377.1 (3)N4—C5—C6—N30.6 (4)
N3i—Ni1—N1—C3165.7 (3)C4—N3—C6—C50.9 (4)
N3—Ni1—N1—C314.3 (3)Ni1—N3—C6—C5170.9 (2)
N5—Ni1—N1—C179.5 (3)C9—N5—C7—N60.4 (3)
N5i—Ni1—N1—C1100.5 (3)Ni1—N5—C7—N6167.72 (19)
N3i—Ni1—N1—C111.9 (3)C8—N6—C7—N50.8 (4)
N3—Ni1—N1—C1168.1 (3)C7—N6—C8—C90.9 (4)
N5—Ni1—N3—C4178.5 (3)N6—C8—C9—N50.7 (4)
N5i—Ni1—N3—C41.5 (3)C7—N5—C9—C80.2 (4)
N1i—Ni1—N3—C488.6 (3)Ni1—N5—C9—C8166.1 (2)
N1—Ni1—N3—C491.4 (3)H8—Br1—C10—C1512.2
N5—Ni1—N3—C611.4 (3)H8—Br1—C10—C11168.2
N5i—Ni1—N3—C6168.6 (3)C15—C10—C11—O2179.1 (3)
N1i—Ni1—N3—C6101.2 (3)Br1—C10—C11—O21.3 (4)
N1—Ni1—N3—C678.8 (3)C15—C10—C11—C120.5 (5)
N3i—Ni1—N5—C7105.8 (2)Br1—C10—C11—C12179.1 (2)
N3—Ni1—N5—C774.2 (2)O2—C11—C12—C13178.7 (3)
N1i—Ni1—N5—C717.3 (2)C10—C11—C12—C130.9 (4)
N1—Ni1—N5—C7162.7 (2)O2—C11—C12—C161.2 (4)
N3i—Ni1—N5—C990.3 (3)C10—C11—C12—C16179.3 (3)
N3—Ni1—N5—C989.7 (3)O1—C16—C12—C130.6 (6)
N1i—Ni1—N5—C9178.8 (3)O1—C16—C12—C11179.6 (4)
N1—Ni1—N5—C91.2 (3)C11—C12—C13—C140.0 (5)
C3—N1—C1—C20.5 (4)C16—C12—C13—C14179.8 (3)
Ni1—N1—C1—C2178.4 (2)C12—C13—C14—C151.4 (6)
C3—N2—C2—C10.6 (4)C12—C13—C14—Br2178.3 (3)
N1—C1—C2—N20.1 (4)C11—C10—C15—C140.8 (5)
C1—N1—C3—N20.9 (4)Br1—C10—C15—C14179.6 (3)
Ni1—N1—C3—N2179.0 (2)C13—C14—C15—C101.8 (6)
C2—N2—C3—N11.0 (4)Br2—C14—C15—C10177.9 (3)
C6—N3—C4—N40.9 (4)C18—N8—C19—O3179.4 (5)
Ni1—N3—C4—N4171.08 (19)C17—N8—C19—O33.5 (7)
C5—N4—C4—N30.5 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3ii0.861.922.764 (5)169
N4—H4A···O2iii0.861.852.703 (3)170
N6—H6A···O2iv0.861.972.772 (3)155
C7—H7···N1i0.932.573.076 (4)115
C8—H8···O1v0.932.593.264 (5)130
C3—H3···N30.932.573.053 (4)113
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C3H4N2)6](C7H3Br2O2)2·2C3H7NO
Mr1171.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)14.7271 (13), 9.0221 (8), 18.1143 (16)
β (°) 100.408 (2)
V3)2367.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)3.84
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.309, 0.392
No. of measured, independent and
observed [I > 2σ(I)] reflections
13477, 5147, 3646
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.01
No. of reflections5147
No. of parameters288
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.32

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N52.121 (2)Ni1—N12.138 (2)
Ni1—N32.128 (2)
N5—Ni1—N5i180N3—Ni1—N1i91.48 (9)
N5—Ni1—N3i91.41 (9)N5—Ni1—N190.14 (9)
N5—Ni1—N388.59 (9)N3—Ni1—N188.52 (9)
N3i—Ni1—N3180N1i—Ni1—N1180
N5—Ni1—N1i89.86 (9)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3ii0.861.922.764 (5)168.8
N4—H4A···O2iii0.861.852.703 (3)170.3
N6—H6A···O2iv0.861.972.772 (3)154.7
C7—H7···N1i0.932.573.076 (4)114.8
C8—H8···O1v0.932.593.264 (5)130.2
C3—H3···N30.932.573.053 (4)113.0
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Hubei Province (No. Q20082601) and the Foundation of Xiaogan University (Z2008012).

References

First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGelman, D., Dechert, S., Schumann, H. & Blum, J. (2002). Inorg. Chim. Acta, 334, 149–158.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds