metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m907-m908

Bis[2-phenyl-1-(phenyl­iminio)isoindo­line] di-μ-chlorido-bis­­[di­chloridopalladate(II)] benzene disolvate

aDepartment of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9, and bSaskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9
*Correspondence e-mail: stephen.foley@usask.ca

(Received 13 May 2008; accepted 4 June 2008; online 13 June 2008)

In the title compound, (C20H17N2)2[Pd2Cl6]·2C6H6, the dichloride-bridged [Pd2Cl6]2− anion lies across an inversion center with each PdII ion in a slightly distorted square-planar environment. In the crystal structure, two cations and an anion are connected via N—H⋯Cl hydrogen bonds between the NH groups of the iminioisoindoline cations and terminal Cl atoms of a hexa­chloridodipalladate(II) anion. The Pd—Cl distance of the terminal chloride engaged in hydrogen bonding is slightly longer than the Pd—Cl distance of the adjacent terminal chloride which is not involved in hydrogen bonding.

Related literature

For related literature, see: Bartczak et al. (2001[Bartczak, T. J., Michalska, Z. M., Ostaszewski, B., Sobota, P. & Strzelec, K. (2001). Inorg. Chim. Acta, 319, 229-234.]); Chitanda et al. (2008[Chitanda, J. M., Prokopchuk, D. E., Quail, J. W. & Foley, S. R. (2008). Organometallics, 27, 2337-2345.]); Fábry et al. (2004[Fábry, J., Dušek, M., Fejfarová, K., Krupková, R., Vaněk, P. & Němec, I. (2004). Acta Cryst. C60, m426-m430.]); Lassahn et al. (2003[Lassahn, P.-G., Lozan, V. & Janiak, C. (2003). Dalton Trans. pp. 927-935.]); Ojwach et al. (2007[Ojwach, S. O., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2007). Polyhedron, 26, 851-861.]); Schupp et al. (2001[Schupp, B. & Keller, H.-L. (2001). Z. Anorg. Allg. Chem. 627, 357-364.]); Yang et al. (2008[Yang, S.-R., Jiang, H.-F., Li, Y.-Q., Chen, H.-J., Luo, W. & Xu, Y.-B. (2008). Tetrahedron, 64, 2930-2937.]).

[Scheme 1]

Experimental

Crystal data
  • (C20H17N2)2[Pd2Cl6]·2C6H6

  • Mr = 1152.46

  • Triclinic, [P \overline 1]

  • a = 9.5457 (3) Å

  • b = 9.9754 (3) Å

  • c = 14.8002 (5) Å

  • α = 74.270 (2)°

  • β = 80.615 (2)°

  • γ = 63.228 (2)°

  • V = 1209.74 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 173 (2) K

  • 0.22 × 0.18 × 0.05 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: ψ scan (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.791, Tmax = 0.946

  • 18458 measured reflections

  • 6458 independent reflections

  • 5322 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.04

  • 6458 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—Cl2 2.2635 (7)
Pd1—Cl1 2.2929 (7)
Pd1—Cl3i 2.3292 (7)
Pd1—Cl3 2.3374 (7)
Cl2—Pd1—Cl1 91.32 (3)
Cl2—Pd1—Cl3i 91.00 (3)
Cl1—Pd1—Cl3i 177.33 (3)
Cl2—Pd1—Cl3 176.86 (3)
Cl1—Pd1—Cl3 91.47 (3)
Cl3i—Pd1—Cl3 86.25 (3)
Symmetry code: (i) -x, -y+2, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.88 2.37 3.242 (2) 171
Symmetry codes: .

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft,The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. London: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of the ongoing research in our laboratory directed at the synthesis of substituted palladacycles incorporating iminoisoindolines (Chitanda et al., 2008), the title compound, I, was obtained by reaction of 1-phenylimino-2-phenylisoindoline with dichloropalladium(II) in the presence of HCl. The bis-iminoisoindolinium hexachlorodipalladate complex crystallizes with two molecules of benzene in the unit cell of the triclinic space group P1. The crystal structure of I is stabilized by a system of intermolecular hydrogen bonds between the imine NH atoms of the iminoisoindolinium cation and the termininal chloride atoms in the hexachlorodipalladate(II) anion. The Pd2Cl62- anion lies across an inversion center and has the expected planar dichloro-bridged structure with the Pd—Cl distance of the terminal chloride engaged in hydrogen bonding being slightly longer at 2.2929 (7)Å than the Pd—Cl distance of the adjacent terminal chloride at 2.2635 (7)Å which does not show any H-bonding. In previously reported structures incorporating a Pd2Cl62- anion, the anion most often lies across an inversion center (Bartczak et al., 2001; Fábry et al., 2004; Lassahn et al., 2003; Ojwach et al., 2007; Schupp et al., 2001; Yang et al., 2008). The molecular structure and packing of the title compound is shown in Figs. 1 and 2.

Related literature top

For related literature, see: Bartczak et al. (2001); Chitanda et al. (2008); Fábry et al. (2004); Lassahn et al. (2003); Ojwach et al. (2007); Schupp et al. (2001); Yang et al. (2008).

Experimental top

The title compound was synthesized by reaction of 1-phenylimino-2- phenylisoindoline with dichloropalladium(II) in the presence of HCl in dichloromethane. Single crystals were obtained by slow evaporation from a benzene solution at ambient temperature.

Refinement top

H atoms were placed in calculated positions with Uiso constrained to be 1.2 times Ueq of the carrier atom for all hydrogen atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with thermal ellipsoids at the 50% probability level. H atoms not participating in H-bonding are omitted for clarity. Only the symmetry unique cation is shown [symmetry code: (i) -x, -y+2, z].
[Figure 2] Fig. 2. Packing of the title compound with hydrogen bonds shown with dashed lines. H atoms not participating in H-bonding are omitted for clarity.
Bis[2-phenyl-1-(phenyliminio)isoindoline] di-µ-chlorido-bis[dichloridopalladate(II)] benzene disolvate top
Crystal data top
(C20H17N2)2[Pd2Cl6]·2C6H6Z = 1
Mr = 1152.46F(000) = 580
Triclinic, P1Dx = 1.582 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5457 (3) ÅCell parameters from 5512 reflections
b = 9.9754 (3) Åθ = 1.0–29.1°
c = 14.8002 (5) ŵ = 1.12 mm1
α = 74.270 (2)°T = 173 K
β = 80.615 (2)°Plate, orange
γ = 63.228 (2)°0.22 × 0.18 × 0.05 mm
V = 1209.74 (7) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6458 independent reflections
Radiation source: fine-focus sealed tube5322 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.038
Detector resolution: 9 pixels mm-1θmax = 29.1°, θmin = 2.9°
ϕ scans and ω scans with κ offsetsh = 1311
Absorption correction: ψ scan
(SHELXTL; Sheldrick, 2008)
k = 1313
Tmin = 0.791, Tmax = 0.946l = 2020
18458 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.4367P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6458 reflectionsΔρmax = 0.82 e Å3
290 parametersΔρmin = 0.94 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (7)
Crystal data top
(C20H17N2)2[Pd2Cl6]·2C6H6γ = 63.228 (2)°
Mr = 1152.46V = 1209.74 (7) Å3
Triclinic, P1Z = 1
a = 9.5457 (3) ÅMo Kα radiation
b = 9.9754 (3) ŵ = 1.12 mm1
c = 14.8002 (5) ÅT = 173 K
α = 74.270 (2)°0.22 × 0.18 × 0.05 mm
β = 80.615 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
6458 independent reflections
Absorption correction: ψ scan
(SHELXTL; Sheldrick, 2008)
5322 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.946Rint = 0.038
18458 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.82 e Å3
6458 reflectionsΔρmin = 0.94 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00603 (2)0.87175 (2)0.103892 (15)0.02846 (8)
Cl10.05538 (8)0.85027 (8)0.25493 (5)0.03459 (15)
Cl20.03111 (9)0.65391 (8)0.14749 (5)0.03895 (17)
Cl30.04870 (8)1.09399 (8)0.05063 (5)0.03515 (15)
N10.5133 (2)0.3157 (3)0.18312 (15)0.0261 (4)
N20.3165 (2)0.4983 (2)0.26541 (15)0.0263 (4)
H20.25040.59640.25590.032*
C10.4296 (3)0.4577 (3)0.19937 (17)0.0243 (5)
C20.4887 (3)0.5622 (3)0.13560 (18)0.0284 (5)
C30.4427 (4)0.7181 (4)0.1276 (2)0.0355 (6)
H30.35290.77680.16190.043*
C40.5329 (4)0.7844 (4)0.0678 (2)0.0435 (7)
H40.50490.89080.06080.052*
C50.6646 (4)0.6971 (4)0.0176 (2)0.0471 (8)
H50.72540.74530.02230.057*
C60.7087 (4)0.5426 (4)0.0246 (2)0.0418 (7)
H60.79790.48430.01030.050*
C70.6181 (3)0.4753 (3)0.08448 (19)0.0317 (6)
C80.6411 (3)0.3118 (3)0.1107 (2)0.0332 (6)
H8A0.62990.27870.05600.040*
H8B0.74550.24210.13660.040*
C90.4809 (3)0.1840 (3)0.21669 (18)0.0267 (5)
C100.3283 (3)0.1986 (3)0.22435 (19)0.0300 (5)
H100.24330.29720.20720.036*
C110.3010 (4)0.0682 (4)0.2573 (2)0.0381 (6)
H110.19670.07700.26400.046*
C120.4264 (4)0.0752 (4)0.2804 (2)0.0428 (7)
H120.40720.16430.30370.051*
C130.5781 (4)0.0902 (3)0.2699 (2)0.0425 (7)
H130.66330.18940.28400.051*
C140.6063 (3)0.0394 (3)0.2387 (2)0.0352 (6)
H140.71090.02990.23240.042*
C150.2902 (3)0.4009 (3)0.34982 (17)0.0233 (5)
C160.4162 (3)0.2904 (3)0.40237 (18)0.0269 (5)
H160.52010.27800.38210.032*
C170.3886 (3)0.1979 (3)0.4851 (2)0.0338 (6)
H170.47430.12120.52160.041*
C180.2376 (4)0.2166 (4)0.5149 (2)0.0379 (6)
H180.21980.15190.57130.045*
C190.1122 (3)0.3291 (4)0.4628 (2)0.0381 (7)
H190.00830.34220.48390.046*
C200.1372 (3)0.4233 (3)0.3796 (2)0.0314 (6)
H200.05120.50140.34390.038*
C210.6984 (4)0.4602 (4)0.4106 (3)0.0488 (8)
H210.64320.56410.41670.059*
C220.7139 (4)0.3430 (4)0.4878 (3)0.0457 (8)
H220.66990.36600.54720.055*
C230.7927 (4)0.1921 (4)0.4801 (3)0.0455 (8)
H230.80310.11100.53380.055*
C240.8565 (4)0.1594 (4)0.3940 (3)0.0480 (8)
H240.91100.05530.38830.058*
C250.8418 (4)0.2765 (5)0.3164 (3)0.0532 (9)
H250.88620.25350.25710.064*
C260.7618 (4)0.4292 (5)0.3246 (3)0.0523 (9)
H260.75140.51090.27120.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02505 (11)0.02529 (12)0.03109 (13)0.00905 (8)0.00203 (8)0.00290 (8)
Cl10.0361 (3)0.0310 (3)0.0325 (3)0.0106 (3)0.0012 (3)0.0077 (3)
Cl20.0451 (4)0.0345 (4)0.0398 (4)0.0227 (3)0.0061 (3)0.0001 (3)
Cl30.0404 (4)0.0322 (3)0.0349 (4)0.0187 (3)0.0071 (3)0.0019 (3)
N10.0222 (10)0.0309 (11)0.0263 (11)0.0128 (9)0.0024 (8)0.0077 (9)
N20.0240 (10)0.0234 (10)0.0266 (11)0.0076 (8)0.0017 (8)0.0045 (8)
C10.0226 (11)0.0292 (12)0.0228 (12)0.0124 (10)0.0016 (9)0.0058 (10)
C20.0307 (13)0.0370 (14)0.0221 (12)0.0210 (11)0.0017 (10)0.0016 (10)
C30.0442 (16)0.0407 (16)0.0283 (14)0.0262 (14)0.0002 (12)0.0045 (12)
C40.066 (2)0.0516 (19)0.0290 (15)0.0426 (17)0.0017 (14)0.0026 (13)
C50.061 (2)0.075 (2)0.0286 (15)0.053 (2)0.0020 (14)0.0060 (15)
C60.0392 (16)0.068 (2)0.0314 (15)0.0353 (16)0.0045 (12)0.0124 (14)
C70.0310 (13)0.0457 (16)0.0257 (13)0.0222 (12)0.0001 (10)0.0100 (12)
C80.0266 (13)0.0446 (16)0.0312 (14)0.0168 (12)0.0067 (11)0.0145 (12)
C90.0309 (13)0.0267 (12)0.0231 (12)0.0122 (11)0.0012 (10)0.0069 (10)
C100.0305 (13)0.0334 (14)0.0291 (13)0.0158 (11)0.0002 (10)0.0087 (11)
C110.0462 (17)0.0453 (17)0.0333 (15)0.0279 (14)0.0031 (13)0.0128 (13)
C120.069 (2)0.0345 (15)0.0322 (15)0.0291 (15)0.0032 (14)0.0091 (12)
C130.0541 (19)0.0277 (14)0.0371 (16)0.0095 (13)0.0034 (14)0.0075 (12)
C140.0335 (14)0.0338 (14)0.0334 (15)0.0079 (12)0.0008 (11)0.0119 (12)
C150.0239 (11)0.0238 (11)0.0218 (11)0.0102 (9)0.0020 (9)0.0063 (9)
C160.0230 (11)0.0279 (12)0.0283 (13)0.0088 (10)0.0011 (10)0.0079 (10)
C170.0376 (15)0.0306 (14)0.0286 (14)0.0117 (12)0.0057 (11)0.0023 (11)
C180.0493 (17)0.0413 (16)0.0288 (14)0.0287 (14)0.0013 (12)0.0017 (12)
C190.0328 (14)0.0503 (18)0.0358 (15)0.0254 (14)0.0069 (12)0.0079 (13)
C200.0234 (12)0.0349 (14)0.0321 (14)0.0103 (11)0.0003 (10)0.0062 (11)
C210.0351 (16)0.0365 (17)0.079 (3)0.0153 (14)0.0067 (16)0.0175 (17)
C220.0331 (15)0.064 (2)0.0496 (19)0.0235 (15)0.0041 (14)0.0259 (17)
C230.0314 (15)0.0464 (18)0.056 (2)0.0190 (14)0.0093 (14)0.0010 (15)
C240.0276 (14)0.0388 (17)0.078 (3)0.0059 (13)0.0101 (15)0.0242 (17)
C250.0315 (15)0.089 (3)0.047 (2)0.0249 (18)0.0012 (14)0.031 (2)
C260.0394 (17)0.059 (2)0.058 (2)0.0292 (17)0.0142 (16)0.0092 (17)
Geometric parameters (Å, º) top
Pd1—Cl22.2635 (7)C11—C121.386 (5)
Pd1—Cl12.2929 (7)C11—H110.9500
Pd1—Cl3i2.3292 (7)C12—C131.374 (5)
Pd1—Cl32.3374 (7)C12—H120.9500
Pd1—Pd1i3.4060 (4)C13—C141.381 (4)
Cl3—Pd1i2.3292 (7)C13—H130.9500
N1—C11.343 (3)C14—H140.9500
N1—C91.426 (3)C15—C161.383 (3)
N1—C81.481 (3)C15—C201.388 (3)
N2—C11.327 (3)C16—C171.386 (4)
N2—C151.424 (3)C16—H160.9500
N2—H20.8800C17—C181.380 (4)
C1—C21.456 (4)C17—H170.9500
C2—C31.388 (4)C18—C191.382 (4)
C2—C71.391 (4)C18—H180.9500
C3—C41.381 (4)C19—C201.390 (4)
C3—H30.9500C19—H190.9500
C4—C51.397 (5)C20—H200.9500
C4—H40.9500C21—C221.367 (5)
C5—C61.381 (5)C21—C261.369 (5)
C5—H50.9500C21—H210.9500
C6—C71.391 (4)C22—C231.374 (5)
C6—H60.9500C22—H220.9500
C7—C81.490 (4)C23—C241.377 (5)
C8—H8A0.9900C23—H230.9500
C8—H8B0.9900C24—C251.371 (5)
C9—C101.385 (4)C24—H240.9500
C9—C141.392 (4)C25—C261.393 (5)
C10—C111.386 (4)C25—H250.9500
C10—H100.9500C26—H260.9500
Cl2—Pd1—Cl191.32 (3)C11—C10—H10120.3
Cl2—Pd1—Cl3i91.00 (3)C10—C11—C12119.8 (3)
Cl1—Pd1—Cl3i177.33 (3)C10—C11—H11120.1
Cl2—Pd1—Cl3176.86 (3)C12—C11—H11120.1
Cl1—Pd1—Cl391.47 (3)C13—C12—C11120.9 (3)
Cl3i—Pd1—Cl386.25 (3)C13—C12—H12119.6
Cl2—Pd1—Pd1i134.20 (2)C11—C12—H12119.6
Cl1—Pd1—Pd1i134.48 (2)C12—C13—C14119.8 (3)
Cl3i—Pd1—Pd1i43.218 (17)C12—C13—H13120.1
Cl3—Pd1—Pd1i43.030 (18)C14—C13—H13120.1
Pd1i—Cl3—Pd193.75 (3)C13—C14—C9119.6 (3)
C1—N1—C9128.5 (2)C13—C14—H14120.2
C1—N1—C8111.3 (2)C9—C14—H14120.2
C9—N1—C8119.7 (2)C16—C15—C20121.3 (2)
C1—N2—C15127.3 (2)C16—C15—N2119.6 (2)
C1—N2—H2116.3C20—C15—N2119.0 (2)
C15—N2—H2116.4C15—C16—C17119.0 (2)
N2—C1—N1126.8 (2)C15—C16—H16120.5
N2—C1—C2124.2 (2)C17—C16—H16120.5
N1—C1—C2108.9 (2)C18—C17—C16120.5 (3)
C3—C2—C7122.0 (3)C18—C17—H17119.8
C3—C2—C1130.0 (3)C16—C17—H17119.8
C7—C2—C1107.7 (2)C17—C18—C19120.1 (3)
C4—C3—C2117.3 (3)C17—C18—H18120.0
C4—C3—H3121.3C19—C18—H18120.0
C2—C3—H3121.3C18—C19—C20120.4 (3)
C3—C4—C5120.9 (3)C18—C19—H19119.8
C3—C4—H4119.5C20—C19—H19119.8
C5—C4—H4119.5C15—C20—C19118.7 (3)
C6—C5—C4121.7 (3)C15—C20—H20120.6
C6—C5—H5119.2C19—C20—H20120.6
C4—C5—H5119.2C22—C21—C26120.6 (3)
C5—C6—C7117.7 (3)C22—C21—H21119.7
C5—C6—H6121.2C26—C21—H21119.7
C7—C6—H6121.2C21—C22—C23120.4 (3)
C2—C7—C6120.4 (3)C21—C22—H22119.8
C2—C7—C8109.5 (2)C23—C22—H22119.8
C6—C7—C8130.0 (3)C22—C23—C24119.6 (3)
N1—C8—C7102.4 (2)C22—C23—H23120.2
N1—C8—H8A111.3C24—C23—H23120.2
C7—C8—H8A111.3C25—C24—C23120.3 (3)
N1—C8—H8B111.3C25—C24—H24119.9
C7—C8—H8B111.3C23—C24—H24119.9
H8A—C8—H8B109.2C24—C25—C26119.9 (3)
C10—C9—C14120.6 (3)C24—C25—H25120.0
C10—C9—N1120.8 (2)C26—C25—H25120.0
C14—C9—N1118.6 (2)C21—C26—C25119.2 (3)
C9—C10—C11119.3 (3)C21—C26—H26120.4
C9—C10—H10120.3C25—C26—H26120.4
Cl1—Pd1—Cl3—Pd1i178.61 (3)C8—N1—C9—C10133.0 (3)
Cl3i—Pd1—Cl3—Pd1i0.0C1—N1—C9—C14144.4 (3)
C15—N2—C1—N121.0 (4)C8—N1—C9—C1444.9 (3)
C15—N2—C1—C2155.2 (2)C14—C9—C10—C112.1 (4)
C9—N1—C1—N215.2 (4)N1—C9—C10—C11180.0 (2)
C8—N1—C1—N2173.5 (2)C9—C10—C11—C121.2 (4)
C9—N1—C1—C2168.2 (2)C10—C11—C12—C130.9 (5)
C8—N1—C1—C23.1 (3)C11—C12—C13—C142.0 (5)
N2—C1—C2—C31.4 (5)C12—C13—C14—C91.1 (4)
N1—C1—C2—C3178.2 (3)C10—C9—C14—C131.0 (4)
N2—C1—C2—C7173.0 (2)N1—C9—C14—C13178.9 (2)
N1—C1—C2—C73.8 (3)C1—N2—C15—C1642.8 (4)
C7—C2—C3—C41.3 (4)C1—N2—C15—C20139.8 (3)
C1—C2—C3—C4172.4 (3)C20—C15—C16—C171.7 (4)
C2—C3—C4—C50.1 (5)N2—C15—C16—C17179.1 (2)
C3—C4—C5—C60.9 (5)C15—C16—C17—C180.4 (4)
C4—C5—C6—C70.7 (5)C16—C17—C18—C190.7 (5)
C3—C2—C7—C61.6 (4)C17—C18—C19—C200.6 (5)
C1—C2—C7—C6173.4 (3)C16—C15—C20—C191.8 (4)
C3—C2—C7—C8177.9 (3)N2—C15—C20—C19179.2 (2)
C1—C2—C7—C83.0 (3)C18—C19—C20—C150.6 (4)
C5—C6—C7—C20.5 (4)C26—C21—C22—C230.4 (5)
C5—C6—C7—C8176.0 (3)C21—C22—C23—C240.1 (5)
C1—N1—C8—C71.3 (3)C22—C23—C24—C250.1 (5)
C9—N1—C8—C7170.9 (2)C23—C24—C25—C260.1 (5)
C2—C7—C8—N11.1 (3)C22—C21—C26—C250.3 (5)
C6—C7—C8—N1174.7 (3)C24—C25—C26—C210.1 (5)
C1—N1—C9—C1037.6 (4)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.882.373.242 (2)171

Experimental details

Crystal data
Chemical formula(C20H17N2)2[Pd2Cl6]·2C6H6
Mr1152.46
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.5457 (3), 9.9754 (3), 14.8002 (5)
α, β, γ (°)74.270 (2), 80.615 (2), 63.228 (2)
V3)1209.74 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.22 × 0.18 × 0.05
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionψ scan
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.791, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
18458, 6458, 5322
Rint0.038
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.04
No. of reflections6458
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.94

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Pd1—Cl22.2635 (7)Pd1—Cl3i2.3292 (7)
Pd1—Cl12.2929 (7)Pd1—Cl32.3374 (7)
Cl2—Pd1—Cl191.32 (3)Cl2—Pd1—Cl3176.86 (3)
Cl2—Pd1—Cl3i91.00 (3)Cl1—Pd1—Cl391.47 (3)
Cl1—Pd1—Cl3i177.33 (3)Cl3i—Pd1—Cl386.25 (3)
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl10.882.373.242 (2)170.8
 

Acknowledgements

Financial assistance for this project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) for an operating grant to SRF, and by the Canadian Government through the Commonwealth Scholarship fund for JMC.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBartczak, T. J., Michalska, Z. M., Ostaszewski, B., Sobota, P. & Strzelec, K. (2001). Inorg. Chim. Acta, 319, 229–234.  Web of Science CSD CrossRef CAS Google Scholar
First citationChitanda, J. M., Prokopchuk, D. E., Quail, J. W. & Foley, S. R. (2008). Organometallics, 27, 2337–2345.  Web of Science CSD CrossRef CAS Google Scholar
First citationFábry, J., Dušek, M., Fejfarová, K., Krupková, R., Vaněk, P. & Němec, I. (2004). Acta Cryst. C60, m426–m430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLassahn, P.-G., Lozan, V. & Janiak, C. (2003). Dalton Trans. pp. 927–935.  Web of Science CSD CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft,The Netherlands.  Google Scholar
First citationOjwach, S. O., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2007). Polyhedron, 26, 851–861.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationSchupp, B. & Keller, H.-L. (2001). Z. Anorg. Allg. Chem. 627, 357–364.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, S.-R., Jiang, H.-F., Li, Y.-Q., Chen, H.-J., Luo, W. & Xu, Y.-B. (2008). Tetrahedron, 64, 2930–2937.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m907-m908
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds