organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[5-(4-Hy­droxy­phen­yl)-1-phenyl-1H-pyrazol-3-yl]phenol

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDivisión de Estudios de Posgrado, Facultad de Ciencias Químicas, U.A.N.L., Guerreo y Progreso S/N, Col. Treviño, C.P. 64570, Monterrey, NL, Mexico
*Correspondence e-mail: flavonoids@hotmail.com

(Received 21 May 2008; accepted 5 June 2008; online 13 June 2008)

The title compound, C21H16N2O2, was derived from 1-(2-hydroxy­phen­yl)-3-(4-methoxy­phen­yl)propane-1,3-dione. The pyrazole ring and one of the hydr­oxy-substituted benzene rings are approximately coplanar, forming a dihedral angle of 7.5 (3)°. The relative conformation of these rings may be influenced by an intra­molecular O—H⋯N hydrogen bond. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds involving different hydr­oxy groups of symmetry-related mol­ecules form extended chains along [201].

Related literature

For related literature, see: Ahmad et al. (1990[Ahmad, R., Malik, M. A. & Zia-ul-Haq, M. (1990). J. Chem. Soc. Pak. 12, 352-355.], 1997[Ahmad, R., Zia-ul-Haq, M., Duddeek, H., Stefaniak, L. & Kowski, J. S. (1997). Monatsh. Chem. 128, 633-640.]); Beeam et al. (1984[Beeam, C. F., Hall, H. L., Huff, A. M., Tummons, R. C. & Grady, S. A. O. (1984). J. Heteroatom. Chem. 21, 1897-1902.]); Elguero (1983[Elguero, J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 5, Part 4A, pp. 167, 304. Elmford, New York: Pergamon Press.]); Trofinenko (1972[Trofinenko, S. (1972). Chem. Rev. 72, 497-500.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O2

  • Mr = 328.36

  • Monoclinic, P 21 /c

  • a = 10.793 (3) Å

  • b = 12.948 (3) Å

  • c = 11.705 (3) Å

  • β = 93.508 (14)°

  • V = 1632.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.44 × 0.40 × 0.26 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 5767 measured reflections

  • 3720 independent reflections

  • 2353 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 97 reflections intensity decay: 3.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.128

  • S = 1.03

  • 3720 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2i 0.82 2.05 2.824 (2) 158
O2—H2B⋯N2 0.82 1.87 2.595 (2) 147
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: XSCANS (Siemens, 1999[Siemens (1999). XSCANS User's Manual. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

Pyrazoles are important because of their potential for biological activity (Beeam et al., 1984). Both traditional and new scientific methods have been used used to prepare new materials for medicine (Elguero et al., 1983) and agriculture (Trofinenko, 1972). Neutral and anionic pyrazoles are excellent ligands and their co-ordination chemistry has been extensively studied (Bonati, 1980). In the molecular structure of the title compound (III) (Fig. 1 and Fig. 3) there is an intramolecular hydrogen bond between the OH group of one phenolic group and the N atom of the pyrazole group (see Table 1 for hydrogen bond details). One of the phenyl groups is approximately coplanar with the pyrazole groups (dihedral angle = 7.5 (3)°), possibly due to the intramolecular hydrogen bond formation. The other two phenyl groups are rotated by 66.4 (12)°. In the crystal structure an intermolecular hydrogen bond between non equivalent hydroxy groups of symmetry related molecules, forms extended chains along [201] (Fig. 2).

Related literature top

For related literature, see: Ahmad et al. (1990, 1997); Beeam et al. (1984); Elguero (1983); Trofinenko (1972).

Experimental top

Compound (I) [see Fig. 3] was prepared by a modified Baker Venkataram rearrangement as reported earlier (Ahmad et al., 1990, 1997). Purification was carried out by recrystallization using absolute ethanol. Compound (II) was synthesized by adding 0.1 mole of phenyl hydrazine in 0.1 mole of compound (II) dissolved in 200 ml of absolute ethanol. The mixture was refluxed for 7 h. Solvent was removed under reduced pressure. Highly viscous residue was recrystallized using absolute ethanol. Compound (III) was synthesized by demethylation of compound (II) using 48% hydrogen bromide in acetic acid. Single crystals suitable for X-ray analysis were obtained by recrystallization from an ethanol solution of (III) at room temperature (Yield: 96%, m.p: 490K).

Refinement top

All H atoms were placed in idealized positions and treated as riding atoms, with C—H = 0.93Å, O-H = 0.82Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: XSCANS (Siemens, 1999); cell refinement: XSCANS (Siemens, 1999); data reduction: XSCANS (Siemens, 1999); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (III) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (III) showing the hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. Reaction scheme.
2-[5-(4-Hydroxyphenyl)-1-phenyl-1H-pyrazol-3-yl]phenol top
Crystal data top
C21H16N2O2F(000) = 688
Mr = 328.36Dx = 1.336 Mg m3
Monoclinic, P21/cMelting point: 490 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.793 (3) ÅCell parameters from 84 reflections
b = 12.948 (3) Åθ = 4.6–12.4°
c = 11.705 (3) ŵ = 0.09 mm1
β = 93.508 (14)°T = 298 K
V = 1632.7 (7) Å3Prismatic, colourless
Z = 40.44 × 0.40 × 0.26 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 1.9°
Graphite monochromatorh = 144
2θ/ω scansk = 161
5767 measured reflectionsl = 1515
3720 independent reflections3 standard reflections every 97 reflections
2353 reflections with I > 2σ(I) intensity decay: 3.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.4416P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3720 reflectionsΔρmax = 0.15 e Å3
227 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0155 (18)
Crystal data top
C21H16N2O2V = 1632.7 (7) Å3
Mr = 328.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.793 (3) ŵ = 0.09 mm1
b = 12.948 (3) ÅT = 298 K
c = 11.705 (3) Å0.44 × 0.40 × 0.26 mm
β = 93.508 (14)°
Data collection top
Siemens P4
diffractometer
Rint = 0.024
5767 measured reflections3 standard reflections every 97 reflections
3720 independent reflections intensity decay: 3.7%
2353 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3720 reflectionsΔρmin = 0.16 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19429 (12)0.33852 (11)0.38082 (11)0.0598 (4)
H1B0.26270.31970.36210.090*
O20.55378 (12)0.16872 (10)0.17109 (13)0.0603 (4)
H2B0.50540.20640.13390.090*
N10.26395 (13)0.27005 (12)0.01205 (13)0.0467 (4)
N20.34918 (13)0.21948 (12)0.05691 (13)0.0462 (4)
C10.3431 (2)0.43942 (17)0.05478 (19)0.0628 (6)
H1A0.40750.40860.09150.075*
C20.3343 (3)0.54518 (19)0.0493 (2)0.0775 (7)
H2A0.39330.58630.08210.093*
C30.2391 (2)0.58993 (18)0.0041 (2)0.0721 (7)
H3A0.23260.66150.00640.087*
C40.1531 (2)0.53006 (17)0.0543 (2)0.0653 (6)
H4A0.08910.56100.09150.078*
C50.16142 (18)0.42387 (16)0.04968 (17)0.0546 (5)
H5A0.10350.38270.08370.066*
C60.25650 (16)0.38005 (14)0.00589 (15)0.0460 (4)
C70.21875 (16)0.10653 (14)0.03158 (15)0.0437 (4)
H7A0.18150.04440.05400.052*
C80.18333 (15)0.20293 (15)0.06634 (15)0.0433 (4)
C90.08425 (15)0.23722 (14)0.14967 (15)0.0441 (4)
C100.03190 (17)0.19422 (15)0.15016 (17)0.0523 (5)
H10A0.04740.14280.09750.063*
C110.12620 (17)0.22564 (16)0.22714 (17)0.0543 (5)
H11A0.20410.19500.22660.065*
C120.10491 (16)0.30191 (14)0.30416 (15)0.0460 (4)
C130.01140 (17)0.34379 (16)0.30736 (16)0.0516 (5)
H13A0.02690.39410.36140.062*
C140.10531 (17)0.31154 (16)0.23075 (16)0.0507 (5)
H14A0.18410.34020.23370.061*
C150.32262 (15)0.11962 (14)0.04482 (14)0.0407 (4)
C160.40064 (15)0.04285 (14)0.10482 (14)0.0404 (4)
C170.36890 (17)0.06076 (15)0.10014 (15)0.0476 (4)
H17A0.29550.08040.06030.057*
C180.44262 (18)0.13518 (16)0.15259 (17)0.0554 (5)
H18A0.42010.20440.14710.066*
C190.55033 (18)0.10638 (17)0.21343 (16)0.0546 (5)
H19A0.60000.15630.25030.066*
C200.58441 (18)0.00551 (16)0.21988 (16)0.0525 (5)
H20A0.65720.01330.26130.063*
C210.51143 (16)0.06923 (14)0.16520 (15)0.0447 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0470 (8)0.0663 (9)0.0638 (8)0.0073 (7)0.0160 (6)0.0117 (7)
O20.0474 (8)0.0503 (8)0.0796 (10)0.0043 (6)0.0253 (7)0.0134 (7)
N10.0380 (8)0.0451 (9)0.0548 (9)0.0054 (7)0.0141 (7)0.0037 (7)
N20.0375 (8)0.0480 (9)0.0514 (8)0.0067 (7)0.0119 (7)0.0054 (7)
C10.0587 (13)0.0636 (14)0.0668 (13)0.0021 (11)0.0084 (10)0.0014 (11)
C20.0867 (18)0.0632 (15)0.0824 (16)0.0137 (14)0.0036 (14)0.0141 (13)
C30.0878 (18)0.0479 (12)0.0775 (15)0.0045 (12)0.0202 (14)0.0046 (11)
C40.0574 (13)0.0601 (13)0.0764 (14)0.0163 (11)0.0138 (11)0.0140 (11)
C50.0446 (10)0.0554 (12)0.0631 (12)0.0036 (9)0.0028 (9)0.0045 (10)
C60.0423 (10)0.0457 (10)0.0483 (10)0.0043 (8)0.0104 (8)0.0023 (8)
C70.0368 (9)0.0468 (10)0.0467 (9)0.0006 (8)0.0051 (7)0.0039 (8)
C80.0324 (8)0.0524 (10)0.0443 (9)0.0035 (8)0.0032 (7)0.0031 (8)
C90.0348 (9)0.0504 (10)0.0460 (9)0.0036 (8)0.0063 (7)0.0021 (8)
C100.0423 (10)0.0558 (11)0.0572 (11)0.0031 (9)0.0089 (8)0.0118 (9)
C110.0363 (9)0.0598 (12)0.0651 (12)0.0072 (9)0.0108 (9)0.0073 (10)
C120.0400 (9)0.0490 (10)0.0475 (10)0.0079 (8)0.0103 (8)0.0008 (8)
C130.0477 (11)0.0601 (12)0.0465 (10)0.0009 (9)0.0014 (8)0.0095 (9)
C140.0359 (9)0.0654 (12)0.0500 (10)0.0050 (9)0.0021 (8)0.0021 (9)
C150.0351 (9)0.0465 (10)0.0400 (8)0.0025 (8)0.0022 (7)0.0052 (8)
C160.0344 (8)0.0487 (10)0.0375 (8)0.0031 (8)0.0034 (7)0.0033 (7)
C170.0415 (10)0.0524 (11)0.0478 (10)0.0047 (8)0.0051 (8)0.0032 (8)
C180.0518 (11)0.0526 (12)0.0612 (11)0.0003 (9)0.0005 (9)0.0094 (9)
C190.0480 (11)0.0617 (13)0.0540 (11)0.0108 (10)0.0012 (9)0.0122 (10)
C200.0407 (10)0.0663 (13)0.0488 (10)0.0059 (9)0.0097 (8)0.0004 (9)
C210.0391 (9)0.0491 (10)0.0449 (9)0.0044 (8)0.0052 (8)0.0084 (8)
Geometric parameters (Å, º) top
O1—C121.362 (2)C8—C91.471 (2)
O1—H1B0.8200C9—C101.371 (3)
O2—C211.367 (2)C9—C141.380 (3)
O2—H2B0.8200C10—C111.379 (3)
N1—N21.3549 (19)C10—H10A0.9300
N1—C81.360 (2)C11—C121.366 (3)
N1—C61.428 (2)C11—H11A0.9300
N2—C151.330 (2)C12—C131.370 (3)
C1—C61.363 (3)C13—C141.376 (3)
C1—C21.374 (3)C13—H13A0.9300
C1—H1A0.9300C14—H14A0.9300
C2—C31.364 (4)C15—C161.455 (2)
C2—H2A0.9300C16—C171.385 (3)
C3—C41.369 (3)C16—C211.394 (2)
C3—H3A0.9300C17—C181.371 (3)
C4—C51.379 (3)C17—H17A0.9300
C4—H4A0.9300C18—C191.377 (3)
C5—C61.371 (3)C18—H18A0.9300
C5—H5A0.9300C19—C201.358 (3)
C7—C81.360 (3)C19—H19A0.9300
C7—C151.401 (2)C20—C211.380 (3)
C7—H7A0.9300C20—H20A0.9300
C12—O1—H1B109.5C11—C10—H10A119.3
C21—O2—H2B109.5C12—C11—C10119.82 (17)
N2—N1—C8111.18 (15)C12—C11—H11A120.1
N2—N1—C6119.34 (14)C10—C11—H11A120.1
C8—N1—C6128.64 (14)O1—C12—C11123.06 (17)
C15—N2—N1105.81 (13)O1—C12—C13117.22 (17)
C6—C1—C2119.5 (2)C11—C12—C13119.71 (16)
C6—C1—H1A120.3C12—C13—C14120.10 (18)
C2—C1—H1A120.3C12—C13—H13A120.0
C3—C2—C1120.0 (2)C14—C13—H13A120.0
C3—C2—H2A120.0C13—C14—C9120.92 (17)
C1—C2—H2A120.0C13—C14—H14A119.5
C2—C3—C4120.4 (2)C9—C14—H14A119.5
C2—C3—H3A119.8N2—C15—C7110.14 (15)
C4—C3—H3A119.8N2—C15—C16119.87 (15)
C3—C4—C5120.0 (2)C7—C15—C16129.96 (16)
C3—C4—H4A120.0C17—C16—C21117.38 (16)
C5—C4—H4A120.0C17—C16—C15120.54 (15)
C6—C5—C4118.9 (2)C21—C16—C15122.04 (16)
C6—C5—H5A120.5C18—C17—C16121.86 (18)
C4—C5—H5A120.5C18—C17—H17A119.1
C1—C6—C5121.20 (19)C16—C17—H17A119.1
C1—C6—N1119.94 (18)C17—C18—C19119.33 (19)
C5—C6—N1118.86 (18)C17—C18—H18A120.3
C8—C7—C15106.22 (15)C19—C18—H18A120.3
C8—C7—H7A126.9C20—C19—C18120.44 (18)
C15—C7—H7A126.9C20—C19—H19A119.8
N1—C8—C7106.65 (14)C18—C19—H19A119.8
N1—C8—C9122.37 (17)C19—C20—C21120.24 (18)
C7—C8—C9130.90 (17)C19—C20—H20A119.9
C10—C9—C14117.98 (16)C21—C20—H20A119.9
C10—C9—C8120.49 (17)O2—C21—C20117.24 (16)
C14—C9—C8121.51 (16)O2—C21—C16122.02 (16)
C9—C10—C11121.40 (18)C20—C21—C16120.73 (18)
C9—C10—H10A119.3
C8—N1—N2—C150.7 (2)C10—C11—C12—O1178.41 (18)
C6—N1—N2—C15171.10 (16)C10—C11—C12—C132.6 (3)
C6—C1—C2—C30.4 (4)O1—C12—C13—C14178.78 (17)
C1—C2—C3—C41.2 (4)C11—C12—C13—C142.2 (3)
C2—C3—C4—C50.9 (3)C12—C13—C14—C90.2 (3)
C3—C4—C5—C60.1 (3)C10—C9—C14—C132.0 (3)
C2—C1—C6—C50.7 (3)C8—C9—C14—C13179.23 (17)
C2—C1—C6—N1179.36 (19)N1—N2—C15—C70.6 (2)
C4—C5—C6—C10.9 (3)N1—N2—C15—C16177.64 (15)
C4—C5—C6—N1179.09 (17)C8—C7—C15—N20.4 (2)
N2—N1—C6—C176.2 (2)C8—C7—C15—C16177.66 (17)
C8—N1—C6—C1115.2 (2)N2—C15—C16—C17175.03 (17)
N2—N1—C6—C5103.7 (2)C7—C15—C16—C177.1 (3)
C8—N1—C6—C564.8 (3)N2—C15—C16—C217.4 (3)
N2—N1—C8—C70.4 (2)C7—C15—C16—C21170.51 (18)
C6—N1—C8—C7169.74 (17)C21—C16—C17—C180.1 (3)
N2—N1—C8—C9177.64 (16)C15—C16—C17—C18177.79 (17)
C6—N1—C8—C913.1 (3)C16—C17—C18—C191.1 (3)
C15—C7—C8—N10.0 (2)C17—C18—C19—C201.1 (3)
C15—C7—C8—C9176.91 (18)C18—C19—C20—C210.1 (3)
N1—C8—C9—C10138.9 (2)C19—C20—C21—O2177.28 (18)
C7—C8—C9—C1044.6 (3)C19—C20—C21—C161.4 (3)
N1—C8—C9—C1442.4 (3)C17—C16—C21—O2177.27 (17)
C7—C8—C9—C14134.1 (2)C15—C16—C21—O20.4 (3)
C14—C9—C10—C111.6 (3)C17—C16—C21—C201.4 (3)
C8—C9—C10—C11179.66 (18)C15—C16—C21—C20179.04 (17)
C9—C10—C11—C120.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.822.052.824 (2)158
O2—H2B···N20.821.872.595 (2)147
Symmetry code: (i) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H16N2O2
Mr328.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.793 (3), 12.948 (3), 11.705 (3)
β (°) 93.508 (14)
V3)1632.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.40 × 0.26
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5767, 3720, 2353
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.03
No. of reflections3720
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.16

Computer programs: XSCANS (Siemens, 1999), SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.8202.0472.824 (2)157.87
O2—H2B···N20.8201.8702.595 (2)146.72
Symmetry code: (i) x1, y+1/2, z1/2.
 

Acknowledgements

AB is grateful to the Higher Education Commission of Pakistan for the PhD scholarship grant.

References

First citationAhmad, R., Malik, M. A. & Zia-ul-Haq, M. (1990). J. Chem. Soc. Pak. 12, 352–355.  Google Scholar
First citationAhmad, R., Zia-ul-Haq, M., Duddeek, H., Stefaniak, L. & Kowski, J. S. (1997). Monatsh. Chem. 128, 633–640.  CrossRef CAS Web of Science Google Scholar
First citationBeeam, C. F., Hall, H. L., Huff, A. M., Tummons, R. C. & Grady, S. A. O. (1984). J. Heteroatom. Chem. 21, 1897–1902.  Google Scholar
First citationBonati, F. (1980). Chim. Ind. (Roma), 62, 323–328,.  CAS Google Scholar
First citationElguero, J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 5, Part 4A, pp. 167, 304. Elmford, New York: Pergamon Press.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1999). XSCANS User's Manual. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTrofinenko, S. (1972). Chem. Rev. 72, 497–500.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds