organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carb­oxy­pyridinium 3-carb­­oxy-4-hy­droxy­benzene­sulfonate

aDepartment of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China, and bScience College, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: zhonglong_wang@126.com

(Received 22 May 2008; accepted 27 May 2008; online 7 June 2008)

Cocrystallization of 4-carboxy­pyridine (4-CPY) and 5-sulfosalicylic acid (5-H2SSA) yields the title salt, C6H6NO2+·C7H5O6S. In the crystal structure, the components of the salt are linked by a combination of inter­molecular O—H⋯O and N—H⋯O, and weak C—H⋯O hydrogen bonds, forming a three-dimensional framework.

Related literature

For related literature, see: Aakeröy & Salmon (2005[Aakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439-448.]); Meng et al. (2007[Meng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667-o670.], 2008[Meng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53-o57.]); Fan et al. (2005[Fan, S.-R., Xiao, H.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, o253-o255.]); Smith et al. (2006[Smith, G., Wermuth, U. D. & Healy, P. C. (2006). J. Chem. Crystallogr. 36, 841-849.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6NO2+·C7H5O6S

  • Mr = 341.29

  • Orthorhombic, P 21 21 21

  • a = 6.6358 (6) Å

  • b = 13.0514 (12) Å

  • c = 16.7415 (14) Å

  • V = 1449.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.30 × 0.04 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 13287 measured reflections

  • 2545 independent reflections

  • 1522 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.168

  • S = 0.97

  • 2545 reflections

  • 220 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1056 Friedel pairs

  • Flack parameter: −0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.82 (2) 1.82 (2) 2.632 (5) 170 (7)
N1—H1A⋯O2ii 0.85 (2) 2.57 (5) 3.140 (7) 125 (5)
C3—H3⋯O3ii 0.93 2.51 3.379 (7) 156
O3—H3A⋯O6iii 0.82 (2) 2.57 (5) 3.140 (5) 127 (6)
O7—H7⋯O4iv 0.83 (5) 1.87 (4) 2.654 (5) 155 (8)
C10—H10⋯O8v 0.93 2.46 3.152 (8) 132
C11—H11⋯O4vi 0.93 2.57 3.257 (7) 131
N1—H1A⋯O6 0.85 (2) 2.14 (3) 2.902 (6) 149 (5)
O3—H3A⋯O2 0.82 (2) 1.90 (4) 2.626 (5) 146 (6)
C10—H10⋯O4 0.93 2.54 3.331 (7) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

As awareness of the importance of pharmaceutical molecular adducts grows, it becomes imperative to fully understand and investigate the intermolecular interactions in a binary, ternary or multi-component organic adducts (Aakeröy and Salmon, 2005). 5-sulfosalicylic acid (5-H2SSA), is a particularly strong acid which is capable of donating its sulfonic protons to many N-containing heterocycles, forming organic salts (Smith et al., 2006; Meng et al., 2007 and 2008; Fan et al., 2005). With the aim of gaining more insight into hydrogen-bonding interactions involving 5-H2SSA and pyridine derivatives, we report here the molecular and supramolecular structure of the title compound.

In the asymmetric unit of title compound (I), contains one 5-HSSA- and one 4-CPY+ ion. Similar to the analogous organic adducts reported (Meng et al., 2007), the H atom is transferred from the sulfonic acid group to the pyridine N atom forming an 1:1 organic salt.

In the crystal structure, the component ions are linked by a combination of O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig.2). An analysis using PLATON (Spek, 2003), showed that there are no other interactions (e.g. C—H···π and π-π) observed in the crystal structure.

Related literature top

For related literature, see: Aakeröy & Salmon (2005); Meng et al. (2007, 2008); Fan et al. (2005); Smith et al. (2006).

Experimental top

All reagents and solvents were used as obtained without further purification. Equivalent molar amount of 4-carboxypyridine and 5-sulfosalicylic acid dihydrate were dissolved in 95% methanol (20 ml). The mixture was stirred for 10 minutes at 330 K and then filtered. Colorless needles of (I) suitable for single-crystal X-ray diffraction analysis grew at the bottom of the vessel in one week after slow evaporation of the solution.

Refinement top

Owing to the poor quality the crystal selected for diffraction, conventional least squares refinement of the structural model gave R1 = 0.072. We attempted to select better crystals for diffraction, but none were an improvement. The title compound is racemic in solution but spontaneously resolved upon crystallization. The absolute configuration of the molecules in the crystal selected was readily determined and the configuration has no chemical significance.

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93 Å (aromatic) and refined in a riding mode [Uiso(H) = 1.2Ueq(aromatic C)]. H atoms bonded to N and O atoms were found in Fourier difference maps and refined with the constraints of N—H = 0.86 (2) Å,O—H = 0.82 (2) Å, and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional framework structure. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted from the drawing.
4-Carboxypyridinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C6H6NO2+·C7H5O6SF(000) = 704
Mr = 341.29Dx = 1.563 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 950 reflections
a = 6.6358 (6) Åθ = 3.1–19.7°
b = 13.0514 (12) ŵ = 0.27 mm1
c = 16.7415 (14) ÅT = 298 K
V = 1449.9 (2) Å3Needle, colorless
Z = 40.30 × 0.04 × 0.02 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1522 reflections with I > 2σ(I)
Radiation source: fine focus sealed Siemens Mo tubeRint = 0.143
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
0.3° wide ω exposures scansh = 77
13287 measured reflectionsk = 1515
2545 independent reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2545 reflectionsΔρmax = 0.45 e Å3
220 parametersΔρmin = 0.37 e Å3
5 restraintsAbsolute structure: Flack (1983), 1056 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C6H6NO2+·C7H5O6SV = 1449.9 (2) Å3
Mr = 341.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.6358 (6) ŵ = 0.27 mm1
b = 13.0514 (12) ÅT = 298 K
c = 16.7415 (14) Å0.30 × 0.04 × 0.02 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1522 reflections with I > 2σ(I)
13287 measured reflectionsRint = 0.143
2545 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168Δρmax = 0.45 e Å3
S = 0.97Δρmin = 0.37 e Å3
2545 reflectionsAbsolute structure: Flack (1983), 1056 Friedel pairs
220 parametersAbsolute structure parameter: 0.1 (2)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5027 (9)0.7437 (4)0.2884 (4)0.0404 (15)
C20.4566 (8)0.6435 (4)0.2645 (3)0.0334 (13)
C30.4291 (9)0.5677 (4)0.3235 (3)0.0362 (13)
H30.39880.50090.30820.043*
C40.4464 (9)0.5908 (4)0.4022 (3)0.0410 (15)
C50.4945 (12)0.6910 (4)0.4256 (4)0.0563 (18)
H50.50830.70690.47940.068*
C60.5212 (12)0.7655 (4)0.3689 (4)0.062 (2)
H60.55240.83190.38480.074*
C70.4373 (9)0.6190 (4)0.1788 (3)0.0393 (14)
O10.3740 (8)0.5263 (3)0.1634 (2)0.0556 (12)
H10.335 (11)0.517 (5)0.1176 (19)0.083*
O20.4714 (6)0.6826 (3)0.1260 (2)0.0496 (11)
O30.5284 (8)0.8216 (3)0.2371 (2)0.0554 (13)
H3A0.524 (13)0.799 (5)0.1914 (18)0.083*
O40.5754 (7)0.5082 (3)0.5343 (2)0.0524 (11)
O50.2154 (6)0.5225 (3)0.5150 (2)0.0519 (11)
O60.4088 (7)0.3976 (2)0.4391 (2)0.0474 (10)
S10.4079 (2)0.49700 (10)0.47738 (8)0.0424 (4)
C80.4478 (9)0.1284 (4)0.6933 (4)0.0466 (15)
C90.5068 (10)0.2291 (5)0.6931 (4)0.0551 (18)
H90.54120.26110.74090.066*
C100.5153 (10)0.2820 (5)0.6234 (4)0.0538 (17)
H100.55570.35030.62300.065*
C110.4091 (10)0.1365 (5)0.5529 (4)0.0531 (16)
H110.37620.10600.50450.064*
C120.4005 (9)0.0804 (4)0.6229 (4)0.0474 (15)
H120.36350.01170.62230.057*
C130.4301 (10)0.0658 (5)0.7697 (4)0.0491 (16)
N10.4651 (8)0.2351 (4)0.5553 (4)0.0533 (14)
H1A0.480 (8)0.267 (4)0.511 (2)0.064*
O70.4546 (8)0.1208 (3)0.8342 (3)0.0669 (14)
H70.478 (13)0.078 (4)0.870 (3)0.100*
O80.3980 (8)0.0253 (3)0.7684 (3)0.0715 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (4)0.045 (3)0.040 (3)0.008 (3)0.006 (3)0.005 (3)
C20.025 (3)0.041 (3)0.035 (3)0.003 (2)0.000 (3)0.004 (2)
C30.028 (3)0.039 (3)0.042 (4)0.002 (2)0.002 (3)0.000 (3)
C40.034 (4)0.046 (3)0.043 (4)0.003 (3)0.007 (3)0.002 (3)
C50.077 (5)0.054 (3)0.038 (3)0.006 (4)0.006 (4)0.005 (3)
C60.085 (6)0.043 (3)0.057 (4)0.017 (4)0.009 (4)0.003 (3)
C70.035 (4)0.043 (3)0.040 (4)0.009 (3)0.001 (3)0.004 (3)
O10.079 (3)0.047 (2)0.041 (3)0.011 (2)0.012 (3)0.003 (2)
O20.048 (3)0.057 (2)0.043 (2)0.007 (2)0.002 (2)0.003 (2)
O30.075 (4)0.050 (2)0.042 (2)0.010 (2)0.003 (3)0.008 (2)
O40.054 (3)0.066 (2)0.037 (2)0.001 (2)0.012 (2)0.003 (2)
O50.040 (3)0.064 (3)0.052 (3)0.002 (2)0.021 (2)0.008 (2)
O60.054 (3)0.047 (2)0.042 (2)0.000 (2)0.000 (3)0.0028 (18)
S10.0461 (9)0.0454 (8)0.0356 (8)0.0018 (8)0.0026 (7)0.0006 (7)
C80.028 (4)0.051 (3)0.061 (4)0.008 (3)0.002 (3)0.002 (3)
C90.044 (4)0.059 (4)0.063 (5)0.002 (3)0.006 (4)0.003 (3)
C100.031 (4)0.060 (4)0.070 (5)0.000 (3)0.001 (4)0.007 (4)
C110.030 (4)0.070 (4)0.059 (4)0.001 (3)0.002 (4)0.009 (3)
C120.029 (3)0.060 (4)0.053 (4)0.001 (3)0.003 (4)0.006 (4)
C130.039 (4)0.053 (4)0.056 (4)0.010 (3)0.006 (4)0.009 (3)
N10.033 (3)0.065 (4)0.062 (4)0.003 (3)0.008 (3)0.011 (3)
O70.081 (4)0.064 (3)0.055 (3)0.001 (3)0.007 (3)0.006 (2)
O80.077 (4)0.062 (3)0.075 (3)0.008 (3)0.011 (3)0.015 (2)
Geometric parameters (Å, º) top
C1—O31.343 (6)O5—S11.462 (4)
C1—C61.382 (8)O6—S11.446 (3)
C1—C21.401 (7)C8—C121.370 (8)
C2—C31.409 (7)C8—C91.371 (8)
C2—C71.477 (7)C8—C131.523 (8)
C3—C41.357 (7)C9—C101.359 (8)
C3—H30.9300C9—H90.9300
C4—C51.401 (7)C10—N11.336 (8)
C4—S11.775 (5)C10—H100.9300
C5—C61.371 (8)C11—N11.340 (7)
C5—H50.9300C11—C121.383 (8)
C6—H60.9300C11—H110.9300
C7—O21.233 (6)C12—H120.9300
C7—O11.306 (6)C13—O81.209 (7)
O1—H10.82 (2)C13—O71.306 (7)
O3—H3A0.82 (2)N1—H1A0.85 (2)
O4—S11.472 (4)O7—H70.83 (5)
O3—C1—C6117.1 (5)O6—S1—C4107.7 (2)
O3—C1—C2123.5 (5)O5—S1—C4105.9 (3)
C6—C1—C2119.3 (5)O4—S1—C4106.4 (3)
C1—C2—C3118.9 (5)C12—C8—C9120.1 (6)
C1—C2—C7119.9 (5)C12—C8—C13117.4 (5)
C3—C2—C7121.2 (5)C9—C8—C13122.5 (6)
C4—C3—C2120.8 (5)C10—C9—C8120.1 (6)
C4—C3—H3119.6C10—C9—H9120.0
C2—C3—H3119.6C8—C9—H9120.0
C3—C4—C5119.9 (5)N1—C10—C9119.3 (6)
C3—C4—S1121.5 (4)N1—C10—H10120.3
C5—C4—S1118.6 (4)C9—C10—H10120.3
C6—C5—C4119.9 (6)N1—C11—C12119.7 (6)
C6—C5—H5120.1N1—C11—H11120.1
C4—C5—H5120.1C12—C11—H11120.1
C5—C6—C1121.1 (5)C8—C12—C11118.5 (5)
C5—C6—H6119.4C8—C12—H12120.8
C1—C6—H6119.4C11—C12—H12120.8
O2—C7—O1122.8 (5)O8—C13—O7125.3 (6)
O2—C7—C2122.3 (5)O8—C13—C8121.7 (6)
O1—C7—C2114.8 (5)O7—C13—C8113.0 (5)
C7—O1—H1115 (5)C10—N1—C11122.3 (6)
C1—O3—H3A109 (5)C10—N1—H1A119 (4)
O6—S1—O5113.5 (3)C11—N1—H1A119 (4)
O6—S1—O4111.9 (2)C13—O7—H7105 (5)
O5—S1—O4111.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.82 (2)1.82 (2)2.632 (5)170 (7)
N1—H1A···O2ii0.85 (2)2.57 (5)3.140 (7)125 (5)
C3—H3···O3ii0.932.513.379 (7)156
O3—H3A···O6iii0.82 (2)2.57 (5)3.140 (5)127 (6)
O7—H7···O4iv0.83 (5)1.87 (4)2.654 (5)155 (8)
C10—H10···O8v0.932.463.152 (8)132
C11—H11···O4vi0.932.573.257 (7)131
N1—H1A···O60.85 (2)2.14 (3)2.902 (6)149 (5)
O3—H3A···O20.82 (2)1.90 (4)2.626 (5)146 (6)
C10—H10···O40.932.543.331 (7)143
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H6NO2+·C7H5O6S
Mr341.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)6.6358 (6), 13.0514 (12), 16.7415 (14)
V3)1449.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13287, 2545, 1522
Rint0.143
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.168, 0.97
No. of reflections2545
No. of parameters220
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.37
Absolute structureFlack (1983), 1056 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.82 (2)1.82 (2)2.632 (5)170 (7)
N1—H1A···O2ii0.85 (2)2.57 (5)3.140 (7)125 (5)
C3—H3···O3ii0.932.513.379 (7)156.3
O3—H3A···O6iii0.82 (2)2.57 (5)3.140 (5)127 (6)
O7—H7···O4iv0.83 (5)1.87 (4)2.654 (5)155 (8)
C10—H10···O8v0.932.463.152 (8)131.6
C11—H11···O4vi0.932.573.257 (7)130.6
N1—H1A···O60.85 (2)2.14 (3)2.902 (6)149 (5)
O3—H3A···O20.82 (2)1.90 (4)2.626 (5)146 (6)
C10—H10···O40.932.543.331 (7)142.6
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1/2, z+3/2; (vi) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grants No. 10574047, No. 10574048 and No. 20490210. This work was also supported by the National 973 Project under grant No. 2006CB921605.

References

First citationAakeröy, C. B. & Salmon, D. J. (2005). CrystEngComm, 7, 439–448.  Web of Science CrossRef Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, S.-R., Xiao, H.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, o253–o255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeng, X.-G., Xiao, Y.-L., Wang, Z.-L. & Liu, C.-L. (2008). Acta Cryst. C64, o53–o57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667–o670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2006). J. Chem. Crystallogr. 36, 841–849.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds