organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1350-o1351

1-[4-(Di­amino­methyl­ene­amino­sulfon­yl)phenyl­iminiometh­yl]-2-naphtholate N,N-di­methyl­formamide disolvate

aDepartment of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt, and bDepartment of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: helghamrymo@yahoo.com

(Received 23 May 2008; accepted 20 June 2008; online 28 June 2008)

The asymmetric unit the title compound, C18H16N4O3S·2C3H7NO, contains a mol­ecule in a zwitterionic form with a deprotonated hydroxyl group and an iminium group, and two dimethyl­formamide solvent mol­ecules. The dihedral angles of the guanidine group and the naphthyl ring system with respect to the central benzene ring are 76.04 (7) and 3.45 (9)°, respectively. The conformation of the mol­ecule may be influenced, in part, by two intra­molecular hydrogen bonds, while in the crystal structure, inter­molecular hydrogen bonds form one-dimensional chains along [010].

Related literature

For related literature, see: Arestrup (1999[Arestrup, F. M. (1999). Int. J. Antimicrob. Agents, 12, 279-285.]); Bergant et al. (1993[Bergant, F., Pacor, S., Ghosh, S., Chattopadhyay, S. K. & Sava, G. (1993). Anti Cancer Drug Res. 13, 1011-1017.]); Boghaei et al. (2000[Boghaei, D. M., Sabounchei, S. J. S. & Rayati, S. (2000). Synth. React. Inorg. Met.-Org. Chem. 30, 1535-1545.]); Esposito et al. (2000[Esposito, E. X., Baran, K., Kelly, K. & Madura, J. D. (2000). J. Mol. Graph. Model. 18, 283-289.]); Ganolkar (1985[Ganolkar, M. C. (1985). Natl Acad. Sci. 8, 343-349.]); Hao & Shen (2000[Hao, Y. & Shen, H. (2000). Spectrochim. Acta A, 56, 1013-1020.]); Jain & Chaturvedi (1977[Jain, P. & Chaturvedi, K. (1977). J. Inorg. Nucl. Chem. 39, 901-903.]); Jeewoth et al. (2000[Jeewoth, T., Li Kam Wah, H., Bhowon, M. G., Ghoorohoo, D. & Babooram, K. (2000). Synth. React. Inorg. Met.-Org. Chem. 30, 1023-1038.]); Johnson et al. (1982[Johnson, D. K., Murphy, T. B., Rose, N. J. & Goodwin, W. H. (1982). Inorg. Chim. Acta, 67, 159-165.]); Kwiatkowski et al. (2003[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwinska, K. (2003). Polyhedron, 22, 1009-1018.]); Lal (1979[Lal, K. (1979). J. Indian Chem. Soc. 56, 749-750.]); Maki & Hashimato (1952[Maki, T. & Hashimato, H. (1952). Bull. Chem. Soc. Jpn, 25, 411-413.]); Papie et al. (1994[Papie, S., Kaprivanae, N., Grabarie, Z. & Paracosterman, D. (1994). Dyes Pigm. 25, 229-240.]); Raman et al. (2003[Raman, N., Kulandai, S. A., Thangaraja, C. & Jeysubramanian, K. (2003). Transition Met. Chem. 28, 29-36.]); Srinivasan et al. (1986[Srinivasan, K., Perrier, S. & Kochi, G. J. (1986). J. Mol. Catal. 36, 297-317.]); Wu & Lu (2003[Wu, S. & Lu, S. (2003). J. Mol. Catal. A. 197, 51-59.]); Tantaru et al. (2002[Tantaru, G., Dorneau, V. & Stan, M. (2002). J. Pharm. Anal. 27, 827-832.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4O3S·2C3H7NO

  • Mr = 514.60

  • Monoclinic, P 21

  • a = 8.5910 (11) Å

  • b = 9.9101 (12) Å

  • c = 15.1762 (19) Å

  • β = 106.327 (1)°

  • V = 1240.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.775, Tmax = 0.965

  • 13950 measured reflections

  • 5450 independent reflections

  • 5190 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.091

  • S = 1.08

  • 5450 reflections

  • 329 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), 2555 Friedel pairs

  • Flack parameter: −0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2 0.88 2.14 2.781 (2) 129
N4—H4A⋯O3 0.88 1.86 2.560 (2) 135
N1—H1B⋯O2i 0.88 2.14 2.959 (2) 155
N1—H1A⋯O5ii 0.88 2.07 2.874 (2) 152
N2—H2A⋯O5ii 0.88 2.16 2.943 (2) 148
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: KENX (Sakai, 2004[Sakai, K. (2004). KENX. Kyushu University, Japan.]); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.]), KENX and ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]).

Supporting information


Comment top

Schiff bases are considered a very important class of ligands as they easily form stable complexes with most transition metals. Moreover, Schiff bases and their metal complexes are becoming increasingly important as biochemical (Johnson et al., 1982), analytical (Hao & Shen, 2000; Tantaru et al., 2002), industrial (Srinivasan et al., 1986) reagents and redox catalysts (Jeewoth et al., 2000; Boghaei et al., 2000; Wu & Lu, 2003; Kwiatkowski et al., 2003) as well as pigment dyes (Maki & Hashimato, 1952; Papie et al., 1994). What appears more important is that Schiff bases and their metal complexes are useful in biological and pharmaceutical applications (Ganolkar, 1985; Bergant et al., 1993; Raman et al., 2003). Sulfonamides are also the oldest class of antimicrobials and are still the drug of choice forroup and protonated amino group many diseases such as cancer and tuberculosis (Arestrup, 1999; Esposito et al., 2000). A number of references are now available to show that the condensation products of sulfonamides with aldehydes and ketones are also biologically active and have a good ability for complexation (Jain & Chaturvedi, 1977; Lal, 1979). In this paper, we report the synthesis and crystal structure of the title compound (I).

The asymmetric unit of (I) consists of one independent molecule of a zwitterion and two molecules of dimethylformamide. The oxygen atom attached to the naphthyl group (O3) is found to be a deprotonated form of hydroxyl group. The imine unit connecting the naphthyl and phenyl groups is in a protonated form, giving an iminium unit. Two intramolecular hydrogen bonds (N4—H4A···O3 and N2—H2B···O2; Table 2) are formed to stabilize the conformation of the molecule. Three intermolecular hydrogen bonds also take part in stabilizing the conformation together with the crystal packing of the compound [N1—H1B···O2(i), N1—H1A···O5(ii), N2—H2A···O5(ii); symmetry operation (i): –x, y-0.5, 1-z, (ii): –x+1, 0.5+y, 1-z]. The guanidine unit, consisting of C1 and N1—N3 atoms, forms a planar geometry and is canted with respect to the central phenyl ring at an angle of 76.04 (7) °. The C=N double bond character of the guanidine moiety is fully delocalized over the unit as shown by the similar C—N distances within the unit. On the other hand, the naphthyl plane is declined only by 3.45 (9) ° with regard to the phenyl ring. The iminium unit, consisting of atoms C8 and N4 [C8—N4 = 1.322 (2) Å], is nearly coplanar to the naphthyl plane, as can be seen by the torsion angles about the C8—C9 axis, i.e., N4—C8—C9—C10 = -1.0 (3) and N4—C8—C9—C18 = 178.27 (17) °. Good planarity is exhibited by the guanidine and phenyl moieties, while the naphthyl moiety shows a deviation from the planar geometry, where the ten atom r.m.s deviation estimated in the best plane calculation is 0.024 Å. No obvious stacking interaction is found in the crystal (see Fig. 2).

Related literature top

For related literature, see: Arestrup (1999); Bergant et al. (1993); Boghaei et al. (2000); Esposito et al. (2000); Ganolkar (1985); Hao & Shen (2000); Jain & Chaturvedi (1977); Jeewoth et al. (2000); Johnson et al. (1982); Kwiatkowski et al. (2003); Lal (1979); Maki & Hashimato (1952); Papie et al. (1994); Raman et al. (2003); Srinivasan et al. (1986); Wu & Lu (2003); Tantaru et al. (2002).

Experimental top

Compound (I) was prepared as follows. A hot methanolic solution of 2-hydroxy-1-naphthaldehyde (0.9 mmol, 0.154 g) was added to a methanolic solution of sulfaguanidine (0.9 mmol, 0.192 g). The resulting solution was then refluxed with stirring for 2 h during which a yellow precipitate deposited. The precipitate was then filtered off from hot solution and then air-dried (yield: 85%). Analysis calculated for C18H16N4O3S: C, 58.69; H, 4.34; N, 15.21; S, 8.69% found: C, 59.16; H, 4.39; N, 14.94; S, 8.76%. IR (ν, cm-1): 3393 (m), 3316 (m), 3167 (w), 1614 (s), 1591 (s), 1580 (sh), 1540 (s),1514 (s), 1406 (m), 1347 (m), 1316 (m), 1302 (w), 1295 (w), 1255 (s), 1175 (m), 1128 (s), 1092 (s), 1060 (s), 1042 (w), 1014 (m), 989 (w), 978 (w), 966 (m), 964 (w), 835 (s), 822 (s), 811 (w), 743 (s), 727 (w), 686 (m), 608 (s), 558 (s), 539 (s), 475 (s), 432 (s), 409 (s). A good quality single-crystal of (I) was prepared by vapour diffusion method as follow. Compound (I) was dissolved in a minimum amount of N,N-dimethylformamide and the solution was left in refrigerator in the presence of ether pool. Upon leaving the solution for 3 days, it gradually raised its volume to give crystals suitable for X-ray diffraction analysis.

Refinement top

All H atoms were placed in idealized positions (methyl C—H = 0.98 Å, aromatic C—H = 0.95 Å, and N—H = 0.88 Å), and included in the refinement in a riding-model approximation, with Uiso(H) = 1.5Ueq(methyl C) and Uiso(H) = 1.2Ueq(aromatic C and N). In the final difference Fourier map, the highest peak was located 0.86 Å from atom C2. The deepest hole was located 0.51 Å from atom S1.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The solvent molecules are not shown.
[Figure 2] Fig. 2. A stereoview for the crystal packing of (I).
1-[4-(Diaminomethyleneaminosulfonyl)phenyliminiomethyl]-2-naphtholate N,N-dimethylformamide disolvate top
Crystal data top
C18H16N4O3S·2C3H7NOF(000) = 544
Mr = 514.60Dx = 1.378 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7706 reflections
a = 8.5910 (11) Åθ = 2.5–28.3°
b = 9.9101 (12) ŵ = 0.18 mm1
c = 15.1762 (19) ÅT = 100 K
β = 106.327 (1)°Cube, yellow
V = 1240.0 (3) Å30.20 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
5450 independent reflections
Radiation source: sealed tube5190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.775, Tmax = 0.965k = 1212
13950 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.3529P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5450 reflectionsΔρmax = 0.47 e Å3
329 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), 2555 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C18H16N4O3S·2C3H7NOV = 1240.0 (3) Å3
Mr = 514.60Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.5910 (11) ŵ = 0.18 mm1
b = 9.9101 (12) ÅT = 100 K
c = 15.1762 (19) Å0.20 × 0.20 × 0.20 mm
β = 106.327 (1)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
5450 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5190 reflections with I > 2σ(I)
Tmin = 0.775, Tmax = 0.965Rint = 0.026
13950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.47 e Å3
S = 1.08Δρmin = 0.22 e Å3
5450 reflectionsAbsolute structure: Flack (1983), 2555 Friedel pairs
329 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.2137 (0.0068) x - 0.3949 (0.0103) y + 8.9719 (0.0123) z = 4.0913 (0.0088)

* -0.0014 (0.0004) N1 * -0.0016 (0.0005) N2 * -0.0016 (0.0005) N3 * 0.0047 (0.0014) C1

Rms deviation of fitted atoms = 0.0027

- 6.1727 (0.0045) x + 6.3206 (0.0058) y + 7.1057 (0.0101) z = 8.7939 (0.0072)

Angle to previous plane (with approximate e.s.d.) = 76.04 (0.07)

* 0.0058 (0.0013) C2 * 0.0060 (0.0013) C3 * -0.0134 (0.0013) C4 * 0.0091 (0.0013) C5 * 0.0025 (0.0013) C6 * -0.0100 (0.0013) C7 0.0707 (0.0027) N4 0.1033 (0.0034) C8

Rms deviation of fitted atoms = 0.0085

- 6.1442 (0.0026) x + 6.5659 (0.0029) y + 6.2926 (0.0042) z = 8.2691 (0.0057)

Angle to previous plane (with approximate e.s.d.) = 3.45 (0.09)

* 0.0103 (0.0013) N4 * -0.0338 (0.0015) C8 * -0.0052 (0.0016) C9 * 0.0523 (0.0016) C10 * 0.0115 (0.0016) C11 * -0.0294 (0.0016) C12 * -0.0226 (0.0017) C13 * -0.0027 (0.0016) C14 * 0.0199 (0.0017) C15 * 0.0248 (0.0017) C16 * -0.0069 (0.0018) C17 * -0.0184 (0.0017) C18

Rms deviation of fitted atoms = 0.0240

- 6.1272 (0.0029) x + 6.5698 (0.0029) y + 6.3590 (0.0070) z = 8.3630 (0.0094)

Angle to previous plane (with approximate e.s.d.) = 0.32 (0.06)

* -0.0161 (0.0015) C9 * 0.0447 (0.0015) C10 * 0.0118 (0.0016) C11 * -0.0248 (0.0016) C12 * -0.0211 (0.0017) C13 * 0.0034 (0.0016) C14 * 0.0230 (0.0017) C15 * 0.0202 (0.0017) C16 * -0.0161 (0.0016) C17 * -0.0248 (0.0016) C18 - 0.0128 (0.0027) N4 - 0.0526 (0.0025) C8 0.1229 (0.0022) O3

Rms deviation of fitted atoms = 0.0230

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11893 (5)0.64754 (4)0.56177 (3)0.01452 (10)
O10.24764 (16)0.55840 (14)0.56814 (9)0.0193 (3)
O20.16593 (16)0.78608 (13)0.53549 (9)0.0194 (3)
O30.57291 (18)0.81413 (15)1.04536 (10)0.0256 (3)
O40.0111 (3)0.32634 (18)0.94460 (18)0.0650 (7)
O50.72580 (19)0.28022 (15)0.68340 (11)0.0285 (3)
N10.1366 (2)0.56994 (16)0.40154 (11)0.0206 (3)
N20.0756 (2)0.77841 (17)0.44614 (12)0.0218 (4)
N30.02653 (19)0.57624 (15)0.49661 (10)0.0165 (3)
N40.3407 (2)0.68157 (15)0.93727 (11)0.0182 (3)
N50.0840 (2)0.11583 (17)0.93544 (12)0.0260 (4)
N60.5259 (2)0.43169 (17)0.68153 (12)0.0219 (4)
C10.0599 (2)0.6446 (2)0.45009 (11)0.0163 (3)
C20.0195 (2)0.6549 (2)0.67283 (11)0.0152 (3)
C30.1424 (2)0.75172 (18)0.69345 (13)0.0186 (4)
C40.2502 (2)0.75575 (19)0.78083 (13)0.0190 (4)
C50.2327 (2)0.66596 (18)0.84865 (12)0.0169 (4)
C60.1098 (2)0.56887 (18)0.82732 (13)0.0183 (4)
C70.0047 (2)0.56322 (19)0.73931 (12)0.0180 (4)
C80.3396 (2)0.60541 (19)1.00860 (13)0.0184 (4)
C90.4473 (2)0.62620 (18)1.09660 (13)0.0176 (4)
C100.5652 (2)0.73244 (19)1.11006 (13)0.0197 (4)
C110.6790 (2)0.74704 (19)1.19945 (14)0.0222 (4)
C120.6721 (2)0.6666 (2)1.27010 (13)0.0224 (4)
C130.5510 (2)0.56323 (19)1.26085 (13)0.0191 (4)
C140.5425 (2)0.4853 (2)1.33700 (13)0.0223 (4)
C150.4250 (3)0.3869 (2)1.32851 (15)0.0248 (4)
C160.3137 (2)0.3655 (2)1.24287 (15)0.0236 (4)
C170.3208 (2)0.4402 (2)1.16690 (13)0.0221 (4)
C180.4381 (2)0.54178 (19)1.17358 (13)0.0179 (4)
C190.0038 (3)0.2224 (2)0.90039 (19)0.0373 (6)
C200.1016 (3)0.0011 (2)0.87992 (17)0.0332 (5)
C210.1793 (4)0.1120 (3)1.03111 (17)0.0470 (7)
C220.5933 (3)0.3374 (2)0.64427 (16)0.0282 (5)
C230.5988 (3)0.4800 (2)0.77380 (15)0.0324 (5)
C240.3774 (3)0.4992 (3)0.62885 (18)0.0399 (6)
H1A0.19390.60950.36910.025*
H1B0.12970.48140.40210.025*
H2A0.13420.81350.41280.026*
H2B0.02740.83140.47690.026*
H4A0.41360.74620.94560.022*
H30.15220.81450.64800.022*
H40.33620.81960.79460.023*
H60.09830.50700.87290.022*
H70.07770.49630.72440.022*
H80.26320.53391.00020.022*
H110.76060.81451.20900.027*
H120.74990.67871.32800.027*
H140.61860.50051.39500.027*
H150.42010.33471.38020.030*
H160.23180.29881.23660.028*
H170.24490.42241.10910.026*
H190.06510.21940.83770.045*
H20A0.02850.01140.81780.050*
H20B0.07440.08190.90750.050*
H20C0.21390.00400.87680.050*
H21A0.14380.18441.06490.071*
H21B0.29430.12431.03510.071*
H21C0.16420.02461.05780.071*
H220.53850.31020.58340.034*
H23A0.65020.56760.77130.049*
H23B0.68070.41530.80690.049*
H23C0.51480.48980.80570.049*
H24A0.33180.45100.57100.060*
H24B0.40240.59230.61580.060*
H24C0.29830.49960.66450.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0178 (2)0.01154 (19)0.01503 (19)0.00018 (18)0.00590 (15)0.00046 (17)
O10.0198 (7)0.0192 (6)0.0197 (6)0.0020 (5)0.0066 (5)0.0012 (5)
O20.0234 (7)0.0159 (6)0.0193 (6)0.0038 (5)0.0067 (6)0.0021 (5)
O30.0315 (8)0.0220 (7)0.0236 (7)0.0062 (6)0.0079 (6)0.0012 (6)
O40.1020 (18)0.0211 (9)0.1044 (19)0.0118 (10)0.0820 (16)0.0082 (10)
O50.0310 (8)0.0228 (7)0.0381 (9)0.0026 (6)0.0202 (7)0.0000 (7)
N10.0297 (9)0.0127 (7)0.0241 (8)0.0003 (7)0.0154 (7)0.0010 (6)
N20.0305 (9)0.0127 (8)0.0286 (9)0.0008 (7)0.0189 (8)0.0002 (7)
N30.0235 (8)0.0120 (7)0.0153 (7)0.0010 (6)0.0076 (6)0.0007 (6)
N40.0199 (8)0.0150 (8)0.0192 (8)0.0021 (6)0.0045 (6)0.0006 (6)
N50.0352 (10)0.0159 (9)0.0279 (9)0.0014 (7)0.0104 (8)0.0012 (6)
N60.0219 (8)0.0188 (8)0.0255 (9)0.0017 (7)0.0076 (7)0.0011 (7)
C10.0196 (8)0.0152 (8)0.0130 (7)0.0028 (8)0.0030 (6)0.0020 (8)
C20.0180 (8)0.0146 (8)0.0130 (7)0.0022 (8)0.0044 (6)0.0016 (8)
C30.0251 (10)0.0147 (9)0.0177 (9)0.0017 (7)0.0087 (8)0.0008 (7)
C40.0226 (10)0.0135 (9)0.0227 (10)0.0046 (7)0.0095 (8)0.0034 (7)
C50.0209 (8)0.0140 (9)0.0170 (8)0.0020 (7)0.0071 (7)0.0019 (7)
C60.0240 (10)0.0139 (9)0.0180 (9)0.0004 (7)0.0077 (7)0.0025 (7)
C70.0194 (9)0.0153 (8)0.0206 (9)0.0014 (7)0.0078 (7)0.0003 (7)
C80.0191 (9)0.0155 (8)0.0211 (9)0.0001 (7)0.0064 (7)0.0013 (7)
C90.0195 (9)0.0153 (9)0.0187 (8)0.0025 (7)0.0063 (7)0.0008 (7)
C100.0230 (10)0.0161 (9)0.0212 (9)0.0008 (7)0.0083 (8)0.0031 (7)
C110.0202 (10)0.0189 (10)0.0270 (10)0.0025 (8)0.0060 (8)0.0069 (8)
C120.0206 (9)0.0251 (10)0.0193 (9)0.0025 (8)0.0022 (7)0.0069 (8)
C130.0210 (9)0.0173 (9)0.0197 (9)0.0060 (7)0.0070 (7)0.0035 (8)
C140.0258 (10)0.0237 (10)0.0166 (9)0.0067 (8)0.0046 (8)0.0033 (8)
C150.0316 (12)0.0230 (10)0.0224 (10)0.0065 (8)0.0119 (9)0.0048 (8)
C160.0238 (10)0.0198 (9)0.0292 (11)0.0006 (8)0.0105 (9)0.0015 (8)
C170.0228 (10)0.0209 (10)0.0206 (9)0.0007 (8)0.0032 (8)0.0002 (8)
C180.0193 (9)0.0163 (9)0.0190 (9)0.0046 (7)0.0067 (7)0.0014 (7)
C190.0469 (15)0.0264 (11)0.0488 (15)0.0044 (11)0.0305 (13)0.0093 (11)
C200.0371 (12)0.0213 (11)0.0470 (14)0.0036 (9)0.0210 (11)0.0056 (10)
C210.0679 (19)0.0395 (15)0.0297 (12)0.0226 (13)0.0070 (12)0.0037 (10)
C220.0337 (12)0.0260 (11)0.0275 (11)0.0041 (9)0.0127 (9)0.0000 (9)
C230.0342 (12)0.0307 (12)0.0328 (12)0.0030 (10)0.0105 (10)0.0056 (10)
C240.0348 (13)0.0313 (13)0.0472 (15)0.0062 (10)0.0011 (11)0.0024 (11)
Geometric parameters (Å, º) top
S1—O11.4397 (14)N6—C221.308 (3)
S1—O21.4549 (14)N6—C231.445 (3)
S1—N31.5963 (16)N6—C241.464 (3)
S1—C21.7702 (17)N1—H1A0.8800
O3—C101.289 (2)N1—H1B0.8800
O4—C191.240 (3)N2—H2A0.8800
O5—C221.261 (3)N2—H2B0.8800
N1—C11.341 (2)N4—H4A0.8800
N2—C11.336 (2)C3—H30.9500
N3—C11.343 (2)C4—H40.9500
N4—C81.322 (2)C6—H60.9500
N4—C51.411 (2)C7—H70.9500
C2—C71.389 (3)C8—H80.9500
C2—C31.396 (3)C11—H110.9500
C3—C41.388 (3)C12—H120.9500
C4—C51.400 (3)C14—H140.9500
C5—C61.398 (3)C15—H150.9500
C6—C71.387 (3)C16—H160.9500
C8—C91.410 (3)C17—H170.9500
C9—C101.435 (3)C19—H190.9500
C9—C181.457 (3)C20—H20A0.9800
C10—C111.439 (3)C20—H20B0.9800
C11—C121.351 (3)C20—H20C0.9800
C12—C131.438 (3)C21—H21A0.9800
C13—C141.409 (3)C21—H21B0.9800
C13—C181.421 (3)C21—H21C0.9800
C14—C151.383 (3)C22—H220.9500
C15—C161.396 (3)C23—H23A0.9800
C16—C171.385 (3)C23—H23B0.9800
C17—C181.408 (3)C23—H23C0.9800
N5—C191.320 (3)C24—H24A0.9800
N5—C201.448 (3)C24—H24B0.9800
N5—C211.453 (3)C24—H24C0.9800
O1—S1—O2115.99 (8)C12—C11—H11119.4
O1—S1—N3107.16 (8)C10—C11—H11119.4
O2—S1—N3113.33 (8)C11—C12—C13122.34 (18)
O1—S1—C2106.52 (8)C11—C12—H12118.8
O2—S1—C2106.42 (9)C13—C12—H12118.8
N3—S1—C2106.86 (8)C14—C13—C18120.20 (18)
C1—N1—H1A120.0C14—C13—C12120.89 (18)
C1—N1—H1B120.0C18—C13—C12118.90 (17)
H1A—N1—H1B120.0C15—C14—C13120.99 (19)
C1—N2—H2A120.0C15—C14—H14119.5
C1—N2—H2B120.0C13—C14—H14119.5
H2A—N2—H2B120.0C14—C15—C16119.00 (19)
C1—N3—S1123.17 (13)C14—C15—H15120.5
C8—N4—C5124.29 (16)C16—C15—H15120.5
C8—N4—H4A117.9C17—C16—C15120.97 (19)
C5—N4—H4A117.9C17—C16—H16119.5
C19—N5—C20122.4 (2)C15—C16—H16119.5
C19—N5—C21121.4 (2)C16—C17—C18121.32 (18)
C20—N5—C21116.0 (2)C16—C17—H17119.3
C22—N6—C23122.12 (19)C18—C17—H17119.3
C22—N6—C24120.95 (19)C17—C18—C13117.50 (17)
C23—N6—C24116.83 (19)C17—C18—C9123.51 (17)
N2—C1—N1116.84 (17)C13—C18—C9118.98 (17)
N2—C1—N3127.02 (17)O4—C19—N5123.8 (3)
N1—C1—N3116.14 (17)O4—C19—H19118.1
C7—C2—C3120.29 (16)N5—C19—H19118.1
C7—C2—S1119.38 (14)N5—C20—H20A109.5
C3—C2—S1120.34 (14)N5—C20—H20B109.5
C4—C3—C2119.58 (17)H20A—C20—H20B109.5
C4—C3—H3120.2N5—C20—H20C109.5
C2—C3—H3120.2H20A—C20—H20C109.5
C3—C4—C5120.20 (17)H20B—C20—H20C109.5
C3—C4—H4119.9N5—C21—H21A109.5
C5—C4—H4119.9N5—C21—H21B109.5
C6—C5—C4119.83 (17)H21A—C21—H21B109.5
C6—C5—N4123.21 (16)N5—C21—H21C109.5
C4—C5—N4116.94 (17)H21A—C21—H21C109.5
C7—C6—C5119.71 (16)H21B—C21—H21C109.5
C7—C6—H6120.1O5—C22—N6124.6 (2)
C5—C6—H6120.1O5—C22—H22117.7
C6—C7—C2120.35 (17)N6—C22—H22117.7
C6—C7—H7119.8N6—C23—H23A109.5
C2—C7—H7119.8N6—C23—H23B109.5
N4—C8—C9122.57 (17)H23A—C23—H23B109.5
N4—C8—H8118.7N6—C23—H23C109.5
C9—C8—H8118.7H23A—C23—H23C109.5
C8—C9—C10119.41 (17)H23B—C23—H23C109.5
C8—C9—C18120.43 (17)N6—C24—H24A109.5
C10—C9—C18120.16 (17)N6—C24—H24B109.5
O3—C10—C9122.53 (18)H24A—C24—H24B109.5
O3—C10—C11119.23 (18)N6—C24—H24C109.5
C9—C10—C11118.24 (17)H24A—C24—H24C109.5
C12—C11—C10121.26 (18)H24B—C24—H24C109.5
O1—S1—N3—C1156.25 (14)C18—C9—C10—O3176.40 (17)
O2—S1—N3—C127.00 (17)C8—C9—C10—C11176.88 (17)
C2—S1—N3—C189.89 (16)C18—C9—C10—C113.8 (3)
S1—N3—C1—N23.9 (3)O3—C10—C11—C12177.77 (18)
S1—N3—C1—N1177.04 (13)C9—C10—C11—C122.4 (3)
O1—S1—C2—C711.77 (17)C10—C11—C12—C130.6 (3)
O2—S1—C2—C7136.09 (15)C11—C12—C13—C14176.99 (18)
N3—S1—C2—C7102.53 (15)C11—C12—C13—C182.2 (3)
O1—S1—C2—C3168.26 (14)C18—C13—C14—C150.1 (3)
O2—S1—C2—C343.94 (16)C12—C13—C14—C15179.23 (18)
N3—S1—C2—C377.44 (16)C13—C14—C15—C160.1 (3)
C7—C2—C3—C40.2 (3)C14—C15—C16—C170.7 (3)
S1—C2—C3—C4179.79 (14)C15—C16—C17—C181.3 (3)
C2—C3—C4—C52.0 (3)C16—C17—C18—C131.2 (3)
C3—C4—C5—C62.3 (3)C16—C17—C18—C9177.82 (18)
C3—C4—C5—N4176.20 (17)C14—C13—C18—C170.6 (3)
C8—N4—C5—C61.3 (3)C12—C13—C18—C17179.77 (17)
C8—N4—C5—C4179.76 (18)C14—C13—C18—C9178.46 (17)
C4—C5—C6—C70.8 (3)C12—C13—C18—C90.7 (3)
N4—C5—C6—C7177.63 (17)C8—C9—C18—C172.6 (3)
C5—C6—C7—C21.0 (3)C10—C9—C18—C17176.74 (17)
C3—C2—C7—C61.4 (3)C8—C9—C18—C13178.44 (16)
S1—C2—C7—C6178.68 (14)C10—C9—C18—C132.3 (3)
C5—N4—C8—C9178.53 (17)C20—N5—C19—O4174.2 (2)
N4—C8—C9—C101.0 (3)C21—N5—C19—O40.8 (4)
N4—C8—C9—C18178.27 (17)C23—N6—C22—O50.3 (3)
C8—C9—C10—O32.9 (3)C24—N6—C22—O5175.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.882.142.781 (2)129
N4—H4A···O30.881.862.560 (2)135
N1—H1B···O2i0.882.142.959 (2)155
N1—H1A···O5ii0.882.072.874 (2)152
N2—H2A···O5ii0.882.162.943 (2)148
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H16N4O3S·2C3H7NO
Mr514.60
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.5910 (11), 9.9101 (12), 15.1762 (19)
β (°) 106.327 (1)
V3)1240.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.775, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
13950, 5450, 5190
Rint0.026
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.091, 1.08
No. of reflections5450
No. of parameters329
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.22
Absolute structureFlack (1983), 2555 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O20.882.142.781 (2)129.1
N4—H4A···O30.881.862.560 (2)135.4
N1—H1B···O2i0.882.142.959 (2)154.8
N1—H1A···O5ii0.882.072.874 (2)151.5
N2—H2A···O5ii0.882.162.943 (2)147.7
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Specially Promoted Research (No. 18002016) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. HE acknowledges the Egyptian Channel System for the financial support to promote the joint research project between Tanta and Kyushu Universities.

References

First citationArestrup, F. M. (1999). Int. J. Antimicrob. Agents, 12, 279–285.  Web of Science CrossRef PubMed Google Scholar
First citationBergant, F., Pacor, S., Ghosh, S., Chattopadhyay, S. K. & Sava, G. (1993). Anti Cancer Drug Res. 13, 1011–1017.  Google Scholar
First citationBoghaei, D. M., Sabounchei, S. J. S. & Rayati, S. (2000). Synth. React. Inorg. Met.-Org. Chem. 30, 1535–1545.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEsposito, E. X., Baran, K., Kelly, K. & Madura, J. D. (2000). J. Mol. Graph. Model. 18, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanolkar, M. C. (1985). Natl Acad. Sci. 8, 343–349.  Google Scholar
First citationHao, Y. & Shen, H. (2000). Spectrochim. Acta A, 56, 1013–1020.  CrossRef CAS Google Scholar
First citationJain, P. & Chaturvedi, K. (1977). J. Inorg. Nucl. Chem. 39, 901–903.  CrossRef CAS Web of Science Google Scholar
First citationJeewoth, T., Li Kam Wah, H., Bhowon, M. G., Ghoorohoo, D. & Babooram, K. (2000). Synth. React. Inorg. Met.-Org. Chem. 30, 1023–1038.  CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJohnson, D. K., Murphy, T. B., Rose, N. J. & Goodwin, W. H. (1982). Inorg. Chim. Acta, 67, 159–165.  CrossRef CAS Web of Science Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwinska, K. (2003). Polyhedron, 22, 1009–1018.  Web of Science CSD CrossRef CAS Google Scholar
First citationLal, K. (1979). J. Indian Chem. Soc. 56, 749–750.  CAS Google Scholar
First citationMaki, T. & Hashimato, H. (1952). Bull. Chem. Soc. Jpn, 25, 411–413.  CrossRef CAS Web of Science Google Scholar
First citationMolecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationPapie, S., Kaprivanae, N., Grabarie, Z. & Paracosterman, D. (1994). Dyes Pigm. 25, 229–240.  Google Scholar
First citationRaman, N., Kulandai, S. A., Thangaraja, C. & Jeysubramanian, K. (2003). Transition Met. Chem. 28, 29–36.  Web of Science CrossRef CAS Google Scholar
First citationSakai, K. (2004). KENX. Kyushu University, Japan.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivasan, K., Perrier, S. & Kochi, G. J. (1986). J. Mol. Catal. 36, 297–317.  CrossRef CAS Google Scholar
First citationTantaru, G., Dorneau, V. & Stan, M. (2002). J. Pharm. Anal. 27, 827–832.  Web of Science CrossRef CAS Google Scholar
First citationWu, S. & Lu, S. (2003). J. Mol. Catal. A. 197, 51–59.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1350-o1351
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds