organic compounds
1-[4-(Diaminomethyleneaminosulfonyl)phenyliminiomethyl]-2-naphtholate N,N-dimethylformamide disolvate
aDepartment of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt, and bDepartment of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
*Correspondence e-mail: helghamrymo@yahoo.com
The 18H16N4O3S·2C3H7NO, contains a molecule in a zwitterionic form with a deprotonated hydroxyl group and an iminium group, and two dimethylformamide solvent molecules. The dihedral angles of the guanidine group and the naphthyl ring system with respect to the central benzene ring are 76.04 (7) and 3.45 (9)°, respectively. The conformation of the molecule may be influenced, in part, by two intramolecular hydrogen bonds, while in the intermolecular hydrogen bonds form one-dimensional chains along [010].
the title compound, CRelated literature
For related literature, see: Arestrup (1999); Bergant et al. (1993); Boghaei et al. (2000); Esposito et al. (2000); Ganolkar (1985); Hao & Shen (2000); Jain & Chaturvedi (1977); Jeewoth et al. (2000); Johnson et al. (1982); Kwiatkowski et al. (2003); Lal (1979); Maki & Hashimato (1952); Papie et al. (1994); Raman et al. (2003); Srinivasan et al. (1986); Wu & Lu (2003); Tantaru et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).
Supporting information
10.1107/S1600536808018710/lh2634sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808018710/lh2634Isup2.hkl
Compound (I) was prepared as follows. A hot methanolic solution of 2-hydroxy-1-naphthaldehyde (0.9 mmol, 0.154 g) was added to a methanolic solution of sulfaguanidine (0.9 mmol, 0.192 g). The resulting solution was then refluxed with stirring for 2 h during which a yellow precipitate deposited. The precipitate was then filtered off from hot solution and then air-dried (yield: 85%). Analysis calculated for C18H16N4O3S: C, 58.69; H, 4.34; N, 15.21; S, 8.69% found: C, 59.16; H, 4.39; N, 14.94; S, 8.76%. IR (ν, cm-1): 3393 (m), 3316 (m), 3167 (w), 1614 (s), 1591 (s), 1580 (sh), 1540 (s),1514 (s), 1406 (m), 1347 (m), 1316 (m), 1302 (w), 1295 (w), 1255 (s), 1175 (m), 1128 (s), 1092 (s), 1060 (s), 1042 (w), 1014 (m), 989 (w), 978 (w), 966 (m), 964 (w), 835 (s), 822 (s), 811 (w), 743 (s), 727 (w), 686 (m), 608 (s), 558 (s), 539 (s), 475 (s), 432 (s), 409 (s). A good quality single-crystal of (I) was prepared by vapour diffusion method as follow. Compound (I) was dissolved in a minimum amount of N,N-dimethylformamide and the solution was left in refrigerator in the presence of ether pool. Upon leaving the solution for 3 days, it gradually raised its volume to give crystals suitable for X-ray diffraction analysis.
All H atoms were placed in idealized positions (methyl C—H = 0.98 Å, aromatic C—H = 0.95 Å, and N—H = 0.88 Å), and included in the
in a riding-model approximation, with Uiso(H) = 1.5Ueq(methyl C) and Uiso(H) = 1.2Ueq(aromatic C and N). In the final difference Fourier map, the highest peak was located 0.86 Å from atom C2. The deepest hole was located 0.51 Å from atom S1.Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: KENX (Sakai, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).C18H16N4O3S·2C3H7NO | F(000) = 544 |
Mr = 514.60 | Dx = 1.378 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 7706 reflections |
a = 8.5910 (11) Å | θ = 2.5–28.3° |
b = 9.9101 (12) Å | µ = 0.18 mm−1 |
c = 15.1762 (19) Å | T = 100 K |
β = 106.327 (1)° | Cube, yellow |
V = 1240.0 (3) Å3 | 0.20 × 0.20 × 0.20 mm |
Z = 2 |
Bruker SMART APEX CCD-detector diffractometer | 5450 independent reflections |
Radiation source: sealed tube | 5190 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 27.1°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→11 |
Tmin = 0.775, Tmax = 0.965 | k = −12→12 |
13950 measured reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0491P)2 + 0.3529P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
5450 reflections | Δρmax = 0.47 e Å−3 |
329 parameters | Δρmin = −0.22 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2555 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.03 (6) |
C18H16N4O3S·2C3H7NO | V = 1240.0 (3) Å3 |
Mr = 514.60 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 8.5910 (11) Å | µ = 0.18 mm−1 |
b = 9.9101 (12) Å | T = 100 K |
c = 15.1762 (19) Å | 0.20 × 0.20 × 0.20 mm |
β = 106.327 (1)° |
Bruker SMART APEX CCD-detector diffractometer | 5450 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 5190 reflections with I > 2σ(I) |
Tmin = 0.775, Tmax = 0.965 | Rint = 0.026 |
13950 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.091 | Δρmax = 0.47 e Å−3 |
S = 1.08 | Δρmin = −0.22 e Å−3 |
5450 reflections | Absolute structure: Flack (1983), 2555 Friedel pairs |
329 parameters | Absolute structure parameter: −0.03 (6) |
1 restraint |
Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 5.2137 (0.0068) x - 0.3949 (0.0103) y + 8.9719 (0.0123) z = 4.0913 (0.0088) * -0.0014 (0.0004) N1 * -0.0016 (0.0005) N2 * -0.0016 (0.0005) N3 * 0.0047 (0.0014) C1 Rms deviation of fitted atoms = 0.0027 - 6.1727 (0.0045) x + 6.3206 (0.0058) y + 7.1057 (0.0101) z = 8.7939 (0.0072) Angle to previous plane (with approximate e.s.d.) = 76.04 (0.07) * 0.0058 (0.0013) C2 * 0.0060 (0.0013) C3 * -0.0134 (0.0013) C4 * 0.0091 (0.0013) C5 * 0.0025 (0.0013) C6 * -0.0100 (0.0013) C7 0.0707 (0.0027) N4 0.1033 (0.0034) C8 Rms deviation of fitted atoms = 0.0085 - 6.1442 (0.0026) x + 6.5659 (0.0029) y + 6.2926 (0.0042) z = 8.2691 (0.0057) Angle to previous plane (with approximate e.s.d.) = 3.45 (0.09) * 0.0103 (0.0013) N4 * -0.0338 (0.0015) C8 * -0.0052 (0.0016) C9 * 0.0523 (0.0016) C10 * 0.0115 (0.0016) C11 * -0.0294 (0.0016) C12 * -0.0226 (0.0017) C13 * -0.0027 (0.0016) C14 * 0.0199 (0.0017) C15 * 0.0248 (0.0017) C16 * -0.0069 (0.0018) C17 * -0.0184 (0.0017) C18 Rms deviation of fitted atoms = 0.0240 - 6.1272 (0.0029) x + 6.5698 (0.0029) y + 6.3590 (0.0070) z = 8.3630 (0.0094) Angle to previous plane (with approximate e.s.d.) = 0.32 (0.06) * -0.0161 (0.0015) C9 * 0.0447 (0.0015) C10 * 0.0118 (0.0016) C11 * -0.0248 (0.0016) C12 * -0.0211 (0.0017) C13 * 0.0034 (0.0016) C14 * 0.0230 (0.0017) C15 * 0.0202 (0.0017) C16 * -0.0161 (0.0016) C17 * -0.0248 (0.0016) C18 - 0.0128 (0.0027) N4 - 0.0526 (0.0025) C8 0.1229 (0.0022) O3 Rms deviation of fitted atoms = 0.0230 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.11893 (5) | 0.64754 (4) | 0.56177 (3) | 0.01452 (10) | |
O1 | −0.24764 (16) | 0.55840 (14) | 0.56814 (9) | 0.0193 (3) | |
O2 | −0.16593 (16) | 0.78608 (13) | 0.53549 (9) | 0.0194 (3) | |
O3 | 0.57291 (18) | 0.81413 (15) | 1.04536 (10) | 0.0256 (3) | |
O4 | −0.0111 (3) | 0.32634 (18) | 0.94460 (18) | 0.0650 (7) | |
O5 | 0.72580 (19) | 0.28022 (15) | 0.68340 (11) | 0.0285 (3) | |
N1 | 0.1366 (2) | 0.56994 (16) | 0.40154 (11) | 0.0206 (3) | |
N2 | 0.0756 (2) | 0.77841 (17) | 0.44614 (12) | 0.0218 (4) | |
N3 | −0.02653 (19) | 0.57624 (15) | 0.49661 (10) | 0.0165 (3) | |
N4 | 0.3407 (2) | 0.68157 (15) | 0.93727 (11) | 0.0182 (3) | |
N5 | 0.0840 (2) | 0.11583 (17) | 0.93544 (12) | 0.0260 (4) | |
N6 | 0.5259 (2) | 0.43169 (17) | 0.68153 (12) | 0.0219 (4) | |
C1 | 0.0599 (2) | 0.6446 (2) | 0.45009 (11) | 0.0163 (3) | |
C2 | 0.0195 (2) | 0.6549 (2) | 0.67283 (11) | 0.0152 (3) | |
C3 | 0.1424 (2) | 0.75172 (18) | 0.69345 (13) | 0.0186 (4) | |
C4 | 0.2502 (2) | 0.75575 (19) | 0.78083 (13) | 0.0190 (4) | |
C5 | 0.2327 (2) | 0.66596 (18) | 0.84865 (12) | 0.0169 (4) | |
C6 | 0.1098 (2) | 0.56887 (18) | 0.82732 (13) | 0.0183 (4) | |
C7 | 0.0047 (2) | 0.56322 (19) | 0.73931 (12) | 0.0180 (4) | |
C8 | 0.3396 (2) | 0.60541 (19) | 1.00860 (13) | 0.0184 (4) | |
C9 | 0.4473 (2) | 0.62620 (18) | 1.09660 (13) | 0.0176 (4) | |
C10 | 0.5652 (2) | 0.73244 (19) | 1.11006 (13) | 0.0197 (4) | |
C11 | 0.6790 (2) | 0.74704 (19) | 1.19945 (14) | 0.0222 (4) | |
C12 | 0.6721 (2) | 0.6666 (2) | 1.27010 (13) | 0.0224 (4) | |
C13 | 0.5510 (2) | 0.56323 (19) | 1.26085 (13) | 0.0191 (4) | |
C14 | 0.5425 (2) | 0.4853 (2) | 1.33700 (13) | 0.0223 (4) | |
C15 | 0.4250 (3) | 0.3869 (2) | 1.32851 (15) | 0.0248 (4) | |
C16 | 0.3137 (2) | 0.3655 (2) | 1.24287 (15) | 0.0236 (4) | |
C17 | 0.3208 (2) | 0.4402 (2) | 1.16690 (13) | 0.0221 (4) | |
C18 | 0.4381 (2) | 0.54178 (19) | 1.17358 (13) | 0.0179 (4) | |
C19 | −0.0038 (3) | 0.2224 (2) | 0.90039 (19) | 0.0373 (6) | |
C20 | 0.1016 (3) | 0.0011 (2) | 0.87992 (17) | 0.0332 (5) | |
C21 | 0.1793 (4) | 0.1120 (3) | 1.03111 (17) | 0.0470 (7) | |
C22 | 0.5933 (3) | 0.3374 (2) | 0.64427 (16) | 0.0282 (5) | |
C23 | 0.5988 (3) | 0.4800 (2) | 0.77380 (15) | 0.0324 (5) | |
C24 | 0.3774 (3) | 0.4992 (3) | 0.62885 (18) | 0.0399 (6) | |
H1A | 0.1939 | 0.6095 | 0.3691 | 0.025* | |
H1B | 0.1297 | 0.4814 | 0.4021 | 0.025* | |
H2A | 0.1342 | 0.8135 | 0.4128 | 0.026* | |
H2B | 0.0274 | 0.8314 | 0.4769 | 0.026* | |
H4A | 0.4136 | 0.7462 | 0.9456 | 0.022* | |
H3 | 0.1522 | 0.8145 | 0.6480 | 0.022* | |
H4 | 0.3362 | 0.8196 | 0.7946 | 0.023* | |
H6 | 0.0983 | 0.5070 | 0.8729 | 0.022* | |
H7 | −0.0777 | 0.4963 | 0.7244 | 0.022* | |
H8 | 0.2632 | 0.5339 | 1.0002 | 0.022* | |
H11 | 0.7606 | 0.8145 | 1.2090 | 0.027* | |
H12 | 0.7499 | 0.6787 | 1.3280 | 0.027* | |
H14 | 0.6186 | 0.5005 | 1.3950 | 0.027* | |
H15 | 0.4201 | 0.3347 | 1.3802 | 0.030* | |
H16 | 0.2318 | 0.2988 | 1.2366 | 0.028* | |
H17 | 0.2449 | 0.4224 | 1.1091 | 0.026* | |
H19 | −0.0651 | 0.2194 | 0.8377 | 0.045* | |
H20A | 0.0285 | 0.0114 | 0.8178 | 0.050* | |
H20B | 0.0744 | −0.0819 | 0.9075 | 0.050* | |
H20C | 0.2139 | −0.0040 | 0.8768 | 0.050* | |
H21A | 0.1438 | 0.1844 | 1.0649 | 0.071* | |
H21B | 0.2943 | 0.1243 | 1.0351 | 0.071* | |
H21C | 0.1642 | 0.0246 | 1.0578 | 0.071* | |
H22 | 0.5385 | 0.3102 | 0.5834 | 0.034* | |
H23A | 0.6502 | 0.5676 | 0.7713 | 0.049* | |
H23B | 0.6807 | 0.4153 | 0.8069 | 0.049* | |
H23C | 0.5148 | 0.4898 | 0.8057 | 0.049* | |
H24A | 0.3318 | 0.4510 | 0.5710 | 0.060* | |
H24B | 0.4024 | 0.5923 | 0.6158 | 0.060* | |
H24C | 0.2983 | 0.4996 | 0.6645 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0178 (2) | 0.01154 (19) | 0.01503 (19) | 0.00018 (18) | 0.00590 (15) | 0.00046 (17) |
O1 | 0.0198 (7) | 0.0192 (6) | 0.0197 (6) | −0.0020 (5) | 0.0066 (5) | 0.0012 (5) |
O2 | 0.0234 (7) | 0.0159 (6) | 0.0193 (6) | 0.0038 (5) | 0.0067 (6) | 0.0021 (5) |
O3 | 0.0315 (8) | 0.0220 (7) | 0.0236 (7) | −0.0062 (6) | 0.0079 (6) | 0.0012 (6) |
O4 | 0.1020 (18) | 0.0211 (9) | 0.1044 (19) | 0.0118 (10) | 0.0820 (16) | 0.0082 (10) |
O5 | 0.0310 (8) | 0.0228 (7) | 0.0381 (9) | 0.0026 (6) | 0.0202 (7) | 0.0000 (7) |
N1 | 0.0297 (9) | 0.0127 (7) | 0.0241 (8) | 0.0003 (7) | 0.0154 (7) | 0.0010 (6) |
N2 | 0.0305 (9) | 0.0127 (8) | 0.0286 (9) | −0.0008 (7) | 0.0189 (8) | 0.0002 (7) |
N3 | 0.0235 (8) | 0.0120 (7) | 0.0153 (7) | 0.0010 (6) | 0.0076 (6) | −0.0007 (6) |
N4 | 0.0199 (8) | 0.0150 (8) | 0.0192 (8) | −0.0021 (6) | 0.0045 (6) | −0.0006 (6) |
N5 | 0.0352 (10) | 0.0159 (9) | 0.0279 (9) | −0.0014 (7) | 0.0104 (8) | −0.0012 (6) |
N6 | 0.0219 (8) | 0.0188 (8) | 0.0255 (9) | −0.0017 (7) | 0.0076 (7) | −0.0011 (7) |
C1 | 0.0196 (8) | 0.0152 (8) | 0.0130 (7) | 0.0028 (8) | 0.0030 (6) | 0.0020 (8) |
C2 | 0.0180 (8) | 0.0146 (8) | 0.0130 (7) | 0.0022 (8) | 0.0044 (6) | −0.0016 (8) |
C3 | 0.0251 (10) | 0.0147 (9) | 0.0177 (9) | −0.0017 (7) | 0.0087 (8) | 0.0008 (7) |
C4 | 0.0226 (10) | 0.0135 (9) | 0.0227 (10) | −0.0046 (7) | 0.0095 (8) | −0.0034 (7) |
C5 | 0.0209 (8) | 0.0140 (9) | 0.0170 (8) | 0.0020 (7) | 0.0071 (7) | −0.0019 (7) |
C6 | 0.0240 (10) | 0.0139 (9) | 0.0180 (9) | −0.0004 (7) | 0.0077 (7) | 0.0025 (7) |
C7 | 0.0194 (9) | 0.0153 (8) | 0.0206 (9) | −0.0014 (7) | 0.0078 (7) | 0.0003 (7) |
C8 | 0.0191 (9) | 0.0155 (8) | 0.0211 (9) | 0.0001 (7) | 0.0064 (7) | −0.0013 (7) |
C9 | 0.0195 (9) | 0.0153 (9) | 0.0187 (8) | 0.0025 (7) | 0.0063 (7) | −0.0008 (7) |
C10 | 0.0230 (10) | 0.0161 (9) | 0.0212 (9) | 0.0008 (7) | 0.0083 (8) | −0.0031 (7) |
C11 | 0.0202 (10) | 0.0189 (10) | 0.0270 (10) | −0.0025 (8) | 0.0060 (8) | −0.0069 (8) |
C12 | 0.0206 (9) | 0.0251 (10) | 0.0193 (9) | 0.0025 (8) | 0.0022 (7) | −0.0069 (8) |
C13 | 0.0210 (9) | 0.0173 (9) | 0.0197 (9) | 0.0060 (7) | 0.0070 (7) | −0.0035 (8) |
C14 | 0.0258 (10) | 0.0237 (10) | 0.0166 (9) | 0.0067 (8) | 0.0046 (8) | −0.0033 (8) |
C15 | 0.0316 (12) | 0.0230 (10) | 0.0224 (10) | 0.0065 (8) | 0.0119 (9) | 0.0048 (8) |
C16 | 0.0238 (10) | 0.0198 (9) | 0.0292 (11) | −0.0006 (8) | 0.0105 (9) | 0.0015 (8) |
C17 | 0.0228 (10) | 0.0209 (10) | 0.0206 (9) | −0.0007 (8) | 0.0032 (8) | 0.0002 (8) |
C18 | 0.0193 (9) | 0.0163 (9) | 0.0190 (9) | 0.0046 (7) | 0.0067 (7) | −0.0014 (7) |
C19 | 0.0469 (15) | 0.0264 (11) | 0.0488 (15) | 0.0044 (11) | 0.0305 (13) | 0.0093 (11) |
C20 | 0.0371 (12) | 0.0213 (11) | 0.0470 (14) | −0.0036 (9) | 0.0210 (11) | −0.0056 (10) |
C21 | 0.0679 (19) | 0.0395 (15) | 0.0297 (12) | −0.0226 (13) | 0.0070 (12) | 0.0037 (10) |
C22 | 0.0337 (12) | 0.0260 (11) | 0.0275 (11) | −0.0041 (9) | 0.0127 (9) | 0.0000 (9) |
C23 | 0.0342 (12) | 0.0307 (12) | 0.0328 (12) | −0.0030 (10) | 0.0105 (10) | −0.0056 (10) |
C24 | 0.0348 (13) | 0.0313 (13) | 0.0472 (15) | 0.0062 (10) | 0.0011 (11) | −0.0024 (11) |
S1—O1 | 1.4397 (14) | N6—C22 | 1.308 (3) |
S1—O2 | 1.4549 (14) | N6—C23 | 1.445 (3) |
S1—N3 | 1.5963 (16) | N6—C24 | 1.464 (3) |
S1—C2 | 1.7702 (17) | N1—H1A | 0.8800 |
O3—C10 | 1.289 (2) | N1—H1B | 0.8800 |
O4—C19 | 1.240 (3) | N2—H2A | 0.8800 |
O5—C22 | 1.261 (3) | N2—H2B | 0.8800 |
N1—C1 | 1.341 (2) | N4—H4A | 0.8800 |
N2—C1 | 1.336 (2) | C3—H3 | 0.9500 |
N3—C1 | 1.343 (2) | C4—H4 | 0.9500 |
N4—C8 | 1.322 (2) | C6—H6 | 0.9500 |
N4—C5 | 1.411 (2) | C7—H7 | 0.9500 |
C2—C7 | 1.389 (3) | C8—H8 | 0.9500 |
C2—C3 | 1.396 (3) | C11—H11 | 0.9500 |
C3—C4 | 1.388 (3) | C12—H12 | 0.9500 |
C4—C5 | 1.400 (3) | C14—H14 | 0.9500 |
C5—C6 | 1.398 (3) | C15—H15 | 0.9500 |
C6—C7 | 1.387 (3) | C16—H16 | 0.9500 |
C8—C9 | 1.410 (3) | C17—H17 | 0.9500 |
C9—C10 | 1.435 (3) | C19—H19 | 0.9500 |
C9—C18 | 1.457 (3) | C20—H20A | 0.9800 |
C10—C11 | 1.439 (3) | C20—H20B | 0.9800 |
C11—C12 | 1.351 (3) | C20—H20C | 0.9800 |
C12—C13 | 1.438 (3) | C21—H21A | 0.9800 |
C13—C14 | 1.409 (3) | C21—H21B | 0.9800 |
C13—C18 | 1.421 (3) | C21—H21C | 0.9800 |
C14—C15 | 1.383 (3) | C22—H22 | 0.9500 |
C15—C16 | 1.396 (3) | C23—H23A | 0.9800 |
C16—C17 | 1.385 (3) | C23—H23B | 0.9800 |
C17—C18 | 1.408 (3) | C23—H23C | 0.9800 |
N5—C19 | 1.320 (3) | C24—H24A | 0.9800 |
N5—C20 | 1.448 (3) | C24—H24B | 0.9800 |
N5—C21 | 1.453 (3) | C24—H24C | 0.9800 |
O1—S1—O2 | 115.99 (8) | C12—C11—H11 | 119.4 |
O1—S1—N3 | 107.16 (8) | C10—C11—H11 | 119.4 |
O2—S1—N3 | 113.33 (8) | C11—C12—C13 | 122.34 (18) |
O1—S1—C2 | 106.52 (8) | C11—C12—H12 | 118.8 |
O2—S1—C2 | 106.42 (9) | C13—C12—H12 | 118.8 |
N3—S1—C2 | 106.86 (8) | C14—C13—C18 | 120.20 (18) |
C1—N1—H1A | 120.0 | C14—C13—C12 | 120.89 (18) |
C1—N1—H1B | 120.0 | C18—C13—C12 | 118.90 (17) |
H1A—N1—H1B | 120.0 | C15—C14—C13 | 120.99 (19) |
C1—N2—H2A | 120.0 | C15—C14—H14 | 119.5 |
C1—N2—H2B | 120.0 | C13—C14—H14 | 119.5 |
H2A—N2—H2B | 120.0 | C14—C15—C16 | 119.00 (19) |
C1—N3—S1 | 123.17 (13) | C14—C15—H15 | 120.5 |
C8—N4—C5 | 124.29 (16) | C16—C15—H15 | 120.5 |
C8—N4—H4A | 117.9 | C17—C16—C15 | 120.97 (19) |
C5—N4—H4A | 117.9 | C17—C16—H16 | 119.5 |
C19—N5—C20 | 122.4 (2) | C15—C16—H16 | 119.5 |
C19—N5—C21 | 121.4 (2) | C16—C17—C18 | 121.32 (18) |
C20—N5—C21 | 116.0 (2) | C16—C17—H17 | 119.3 |
C22—N6—C23 | 122.12 (19) | C18—C17—H17 | 119.3 |
C22—N6—C24 | 120.95 (19) | C17—C18—C13 | 117.50 (17) |
C23—N6—C24 | 116.83 (19) | C17—C18—C9 | 123.51 (17) |
N2—C1—N1 | 116.84 (17) | C13—C18—C9 | 118.98 (17) |
N2—C1—N3 | 127.02 (17) | O4—C19—N5 | 123.8 (3) |
N1—C1—N3 | 116.14 (17) | O4—C19—H19 | 118.1 |
C7—C2—C3 | 120.29 (16) | N5—C19—H19 | 118.1 |
C7—C2—S1 | 119.38 (14) | N5—C20—H20A | 109.5 |
C3—C2—S1 | 120.34 (14) | N5—C20—H20B | 109.5 |
C4—C3—C2 | 119.58 (17) | H20A—C20—H20B | 109.5 |
C4—C3—H3 | 120.2 | N5—C20—H20C | 109.5 |
C2—C3—H3 | 120.2 | H20A—C20—H20C | 109.5 |
C3—C4—C5 | 120.20 (17) | H20B—C20—H20C | 109.5 |
C3—C4—H4 | 119.9 | N5—C21—H21A | 109.5 |
C5—C4—H4 | 119.9 | N5—C21—H21B | 109.5 |
C6—C5—C4 | 119.83 (17) | H21A—C21—H21B | 109.5 |
C6—C5—N4 | 123.21 (16) | N5—C21—H21C | 109.5 |
C4—C5—N4 | 116.94 (17) | H21A—C21—H21C | 109.5 |
C7—C6—C5 | 119.71 (16) | H21B—C21—H21C | 109.5 |
C7—C6—H6 | 120.1 | O5—C22—N6 | 124.6 (2) |
C5—C6—H6 | 120.1 | O5—C22—H22 | 117.7 |
C6—C7—C2 | 120.35 (17) | N6—C22—H22 | 117.7 |
C6—C7—H7 | 119.8 | N6—C23—H23A | 109.5 |
C2—C7—H7 | 119.8 | N6—C23—H23B | 109.5 |
N4—C8—C9 | 122.57 (17) | H23A—C23—H23B | 109.5 |
N4—C8—H8 | 118.7 | N6—C23—H23C | 109.5 |
C9—C8—H8 | 118.7 | H23A—C23—H23C | 109.5 |
C8—C9—C10 | 119.41 (17) | H23B—C23—H23C | 109.5 |
C8—C9—C18 | 120.43 (17) | N6—C24—H24A | 109.5 |
C10—C9—C18 | 120.16 (17) | N6—C24—H24B | 109.5 |
O3—C10—C9 | 122.53 (18) | H24A—C24—H24B | 109.5 |
O3—C10—C11 | 119.23 (18) | N6—C24—H24C | 109.5 |
C9—C10—C11 | 118.24 (17) | H24A—C24—H24C | 109.5 |
C12—C11—C10 | 121.26 (18) | H24B—C24—H24C | 109.5 |
O1—S1—N3—C1 | 156.25 (14) | C18—C9—C10—O3 | −176.40 (17) |
O2—S1—N3—C1 | 27.00 (17) | C8—C9—C10—C11 | −176.88 (17) |
C2—S1—N3—C1 | −89.89 (16) | C18—C9—C10—C11 | 3.8 (3) |
S1—N3—C1—N2 | −3.9 (3) | O3—C10—C11—C12 | 177.77 (18) |
S1—N3—C1—N1 | 177.04 (13) | C9—C10—C11—C12 | −2.4 (3) |
O1—S1—C2—C7 | 11.77 (17) | C10—C11—C12—C13 | −0.6 (3) |
O2—S1—C2—C7 | 136.09 (15) | C11—C12—C13—C14 | −176.99 (18) |
N3—S1—C2—C7 | −102.53 (15) | C11—C12—C13—C18 | 2.2 (3) |
O1—S1—C2—C3 | −168.26 (14) | C18—C13—C14—C15 | 0.1 (3) |
O2—S1—C2—C3 | −43.94 (16) | C12—C13—C14—C15 | 179.23 (18) |
N3—S1—C2—C3 | 77.44 (16) | C13—C14—C15—C16 | −0.1 (3) |
C7—C2—C3—C4 | 0.2 (3) | C14—C15—C16—C17 | 0.7 (3) |
S1—C2—C3—C4 | −179.79 (14) | C15—C16—C17—C18 | −1.3 (3) |
C2—C3—C4—C5 | −2.0 (3) | C16—C17—C18—C13 | 1.2 (3) |
C3—C4—C5—C6 | 2.3 (3) | C16—C17—C18—C9 | −177.82 (18) |
C3—C4—C5—N4 | −176.20 (17) | C14—C13—C18—C17 | −0.6 (3) |
C8—N4—C5—C6 | 1.3 (3) | C12—C13—C18—C17 | −179.77 (17) |
C8—N4—C5—C4 | 179.76 (18) | C14—C13—C18—C9 | 178.46 (17) |
C4—C5—C6—C7 | −0.8 (3) | C12—C13—C18—C9 | −0.7 (3) |
N4—C5—C6—C7 | 177.63 (17) | C8—C9—C18—C17 | −2.6 (3) |
C5—C6—C7—C2 | −1.0 (3) | C10—C9—C18—C17 | 176.74 (17) |
C3—C2—C7—C6 | 1.4 (3) | C8—C9—C18—C13 | 178.44 (16) |
S1—C2—C7—C6 | −178.68 (14) | C10—C9—C18—C13 | −2.3 (3) |
C5—N4—C8—C9 | −178.53 (17) | C20—N5—C19—O4 | −174.2 (2) |
N4—C8—C9—C10 | −1.0 (3) | C21—N5—C19—O4 | 0.8 (4) |
N4—C8—C9—C18 | 178.27 (17) | C23—N6—C22—O5 | −0.3 (3) |
C8—C9—C10—O3 | 2.9 (3) | C24—N6—C22—O5 | 175.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O2 | 0.88 | 2.14 | 2.781 (2) | 129 |
N4—H4A···O3 | 0.88 | 1.86 | 2.560 (2) | 135 |
N1—H1B···O2i | 0.88 | 2.14 | 2.959 (2) | 155 |
N1—H1A···O5ii | 0.88 | 2.07 | 2.874 (2) | 152 |
N2—H2A···O5ii | 0.88 | 2.16 | 2.943 (2) | 148 |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H16N4O3S·2C3H7NO |
Mr | 514.60 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 100 |
a, b, c (Å) | 8.5910 (11), 9.9101 (12), 15.1762 (19) |
β (°) | 106.327 (1) |
V (Å3) | 1240.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.18 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.775, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13950, 5450, 5190 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.641 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.091, 1.08 |
No. of reflections | 5450 |
No. of parameters | 329 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.22 |
Absolute structure | Flack (1983), 2555 Friedel pairs |
Absolute structure parameter | −0.03 (6) |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), TEXSAN (Molecular Structure Corporation, 2001), KENX (Sakai, 2004) and ORTEPII (Johnson, 1976).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O2 | 0.88 | 2.14 | 2.781 (2) | 129.1 |
N4—H4A···O3 | 0.88 | 1.86 | 2.560 (2) | 135.4 |
N1—H1B···O2i | 0.88 | 2.14 | 2.959 (2) | 154.8 |
N1—H1A···O5ii | 0.88 | 2.07 | 2.874 (2) | 151.5 |
N2—H2A···O5ii | 0.88 | 2.16 | 2.943 (2) | 147.7 |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+1. |
Acknowledgements
This work was supported by a Grant-in-Aid for Specially Promoted Research (No. 18002016) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. HE acknowledges the Egyptian Channel System for the financial support to promote the joint research project between Tanta and Kyushu Universities.
References
Arestrup, F. M. (1999). Int. J. Antimicrob. Agents, 12, 279–285. Web of Science CrossRef PubMed Google Scholar
Bergant, F., Pacor, S., Ghosh, S., Chattopadhyay, S. K. & Sava, G. (1993). Anti Cancer Drug Res. 13, 1011–1017. Google Scholar
Boghaei, D. M., Sabounchei, S. J. S. & Rayati, S. (2000). Synth. React. Inorg. Met.-Org. Chem. 30, 1535–1545. CrossRef CAS Google Scholar
Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Esposito, E. X., Baran, K., Kelly, K. & Madura, J. D. (2000). J. Mol. Graph. Model. 18, 283–289. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ganolkar, M. C. (1985). Natl Acad. Sci. 8, 343–349. Google Scholar
Hao, Y. & Shen, H. (2000). Spectrochim. Acta A, 56, 1013–1020. CrossRef CAS Google Scholar
Jain, P. & Chaturvedi, K. (1977). J. Inorg. Nucl. Chem. 39, 901–903. CrossRef CAS Web of Science Google Scholar
Jeewoth, T., Li Kam Wah, H., Bhowon, M. G., Ghoorohoo, D. & Babooram, K. (2000). Synth. React. Inorg. Met.-Org. Chem. 30, 1023–1038. CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Johnson, D. K., Murphy, T. B., Rose, N. J. & Goodwin, W. H. (1982). Inorg. Chim. Acta, 67, 159–165. CrossRef CAS Web of Science Google Scholar
Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwinska, K. (2003). Polyhedron, 22, 1009–1018. Web of Science CSD CrossRef CAS Google Scholar
Lal, K. (1979). J. Indian Chem. Soc. 56, 749–750. CAS Google Scholar
Maki, T. & Hashimato, H. (1952). Bull. Chem. Soc. Jpn, 25, 411–413. CrossRef CAS Web of Science Google Scholar
Molecular Structure Corporation (2001). TEXSAN. MSC, The Woodlands, Texas, USA. Google Scholar
Papie, S., Kaprivanae, N., Grabarie, Z. & Paracosterman, D. (1994). Dyes Pigm. 25, 229–240. Google Scholar
Raman, N., Kulandai, S. A., Thangaraja, C. & Jeysubramanian, K. (2003). Transition Met. Chem. 28, 29–36. Web of Science CrossRef CAS Google Scholar
Sakai, K. (2004). KENX. Kyushu University, Japan. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srinivasan, K., Perrier, S. & Kochi, G. J. (1986). J. Mol. Catal. 36, 297–317. CrossRef CAS Google Scholar
Tantaru, G., Dorneau, V. & Stan, M. (2002). J. Pharm. Anal. 27, 827–832. Web of Science CrossRef CAS Google Scholar
Wu, S. & Lu, S. (2003). J. Mol. Catal. A. 197, 51–59. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases are considered a very important class of ligands as they easily form stable complexes with most transition metals. Moreover, Schiff bases and their metal complexes are becoming increasingly important as biochemical (Johnson et al., 1982), analytical (Hao & Shen, 2000; Tantaru et al., 2002), industrial (Srinivasan et al., 1986) reagents and redox catalysts (Jeewoth et al., 2000; Boghaei et al., 2000; Wu & Lu, 2003; Kwiatkowski et al., 2003) as well as pigment dyes (Maki & Hashimato, 1952; Papie et al., 1994). What appears more important is that Schiff bases and their metal complexes are useful in biological and pharmaceutical applications (Ganolkar, 1985; Bergant et al., 1993; Raman et al., 2003). Sulfonamides are also the oldest class of antimicrobials and are still the drug of choice forroup and protonated amino group many diseases such as cancer and tuberculosis (Arestrup, 1999; Esposito et al., 2000). A number of references are now available to show that the condensation products of sulfonamides with aldehydes and ketones are also biologically active and have a good ability for complexation (Jain & Chaturvedi, 1977; Lal, 1979). In this paper, we report the synthesis and crystal structure of the title compound (I).
The asymmetric unit of (I) consists of one independent molecule of a zwitterion and two molecules of dimethylformamide. The oxygen atom attached to the naphthyl group (O3) is found to be a deprotonated form of hydroxyl group. The imine unit connecting the naphthyl and phenyl groups is in a protonated form, giving an iminium unit. Two intramolecular hydrogen bonds (N4—H4A···O3 and N2—H2B···O2; Table 2) are formed to stabilize the conformation of the molecule. Three intermolecular hydrogen bonds also take part in stabilizing the conformation together with the crystal packing of the compound [N1—H1B···O2(i), N1—H1A···O5(ii), N2—H2A···O5(ii); symmetry operation (i): –x, y-0.5, 1-z, (ii): –x+1, 0.5+y, 1-z]. The guanidine unit, consisting of C1 and N1—N3 atoms, forms a planar geometry and is canted with respect to the central phenyl ring at an angle of 76.04 (7) °. The C=N double bond character of the guanidine moiety is fully delocalized over the unit as shown by the similar C—N distances within the unit. On the other hand, the naphthyl plane is declined only by 3.45 (9) ° with regard to the phenyl ring. The iminium unit, consisting of atoms C8 and N4 [C8—N4 = 1.322 (2) Å], is nearly coplanar to the naphthyl plane, as can be seen by the torsion angles about the C8—C9 axis, i.e., N4—C8—C9—C10 = -1.0 (3) and N4—C8—C9—C18 = 178.27 (17) °. Good planarity is exhibited by the guanidine and phenyl moieties, while the naphthyl moiety shows a deviation from the planar geometry, where the ten atom r.m.s deviation estimated in the best plane calculation is 0.024 Å. No obvious stacking interaction is found in the crystal (see Fig. 2).