organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-Benzyl-5-(2-fur­yl)-4H-1,2,4-triazol-3-ylsulfan­yl]acetamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: mzareef71@yahoo.com

(Received 29 May 2008; accepted 7 June 2008; online 13 June 2008)

In the title compound, C15H14N4O2S, the phenyl ring is inclined at 70.25 (6)° with respect to the approximately planar fur­yl–triazolsulfan­yl–acetamide unit. In the crystal structure, mol­ecules related by inversion centers form dimers via inter­molecular N—H⋯O hydrogen bonds between acetamide groups, resulting in eight-membered rings with an R22(8) motif. In addition, the other H atom of the acetamide group is involved in an inter­molecular hydrogen bond with an N atom of the triazole ring, resulting in chains extended along the c axis. The overall effect is the formation of a hydrogen-bonded two-dimensional framework perpendicular to the a axis.

Related literature

For related literature, see: Ahmad et al. (2001[Ahmad, R., Iqbal, R., Akthar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671-1682.]); Altman & Solomost (1993[Altman, A. & Solomost, T. (1993). Hortic. Sci. 28, 201-203.]); Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H. -B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]); Chai et al. (2003[Chai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkivoc, ii, 141-145.]); Dege et al. (2004[Dege, N., Andac, O., Cansız, A., Çetin, A., Şekerci, M. & Dinçer, M. (2004). Acta Cryst. E60, o1405-o1407.]); Hashimoto et al. (1990[Hashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull. 38, 2532-2536.]); Kanazawa et al. (1988[Kanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644-673.]); Yildirim et al. (2004[Yıldırım, S. Ö., Akkurt, M., Koparır, M., Cansız, A., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o2368-o2370.]); Zareef, Iqbal & Parvez (2008[Zareef, M., Iqbal, R. & Parvez, M. (2008). Acta Cryst. E64, o952-o953.]); Zareef, Iqbal, Mirza et al. (2008[Zareef, M., Iqbal, R., Mirza, B., Khan, K. M., Manan, A., Asim, F. & Khan, S. W. (2008). Arkivoc, ii, 141-152.]); Öztürk et al. (2004[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o425-o427.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O2S

  • Mr = 314.36

  • Monoclinic, P 21 /c

  • a = 15.995 (9) Å

  • b = 7.261 (3) Å

  • c = 13.598 (8) Å

  • β = 105.46 (2)°

  • V = 1522.1 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 (2) K

  • 0.24 × 0.08 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.948, Tmax = 0.995

  • 5255 measured reflections

  • 3435 independent reflections

  • 2449 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 1.04

  • 3435 reflections

  • 206 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2i 0.88 (2) 2.01 (2) 2.880 (2) 172 (2)
N4—H4B⋯N2ii 0.89 (2) 2.01 (2) 2.881 (3) 167 (2)
C9—H9B⋯O1 0.99 2.36 3.007 (3) 122
Symmetry codes: (i) -x, -y-1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SAPI91 (Fan, 1991[Fan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of 1,2,4-triazole have significant importance for their broad-spectrum biological and pharmacological activities, such as fungicidal, herbicidal, anticonvulsant, antitumoral, inhibition of cholesterol (Chai et al., 2003; Kanazawa et al., 1988; Hashimoto et al., 1990). In addition, they have many applications in the agriculture domain (Altman & Solomost, 1993). In this paper, we report the synthesis and crystal structure of the title compound, (I).

The structure of the title compound (Fig. 1) is composed of a phenyl ring that is inclined at 70.25 (6)° with respect to a somewhat planar furyl-triazol-thio-acetamide moiety. The mean-planes of the furyl and triazole rings lie at 8.34 (13)° with respect to each other while the atoms in the thioacetamide group (S1/C7/C8/O2/N4) also form a plane which is inclined at 9.48 (10) and 3.45 (12)°, respectively, with furyl and triazole rings. Bond distances and bond angles in (I) agree well with the corresponding bond distances and bond angles reported in compounds closely related to (I) (Zareef, Iqbal & Parvez, 2008; Öztürk et al., 2004; Yildirim et al., 2004; Dege et al., 2004); in all these compounds, the mean-planes of the phenyl rings and the furyl-triazole moieties lie close to right angles. The molecules of (I) lying about inversion centers form dimers as a result of intermolecular N—H···O type hydrogen bonding between acetamide groups; the resulting eight membered rings exhibit an R22(8)-type motif (Bernstein et al., 1994). The second H-atom of the acetamide group is involved in an intermolecular hydrogen bond with N2 of the triazole ring thus resulting in a chain structure along the c-axis. The overall effect is the formation of a hydrogen-bonded two-dimensional framework perpendicular to the a-axis (Fig. 2). The structure is further stabilized by non-classical intramolecular interactions of the type C—H···O (Table 1).

Related literature top

For related literature, see: Ahmad et al. (2001); Altman & Solomost (1993); Bernstein et al. (1994); Chai et al. (2003); Dege et al. (2004); Hashimoto et al. (1990); Kanazawa et al. (1988); Yildirim et al. (2004); Zareef, Iqbal & Parvez (2008); Zareef, Iqbal, Mirza et al. (2008); Öztürk et al. (2004).

Experimental top

4-Benzyl-1-(2-furoyl)thiosemicarbazide (10 mmol) was dissolved in aqueous 4 N NaOH solution (50 ml). The solution was heated to reflux for 7 h, cooled and filtered. The filtrate was acidified to pH of 4–5, with 4 N HCl. The solid crude product, 4-benzyl-3-(2-furyl)-1H-1,2,4-triazole-5(4H)-thione, was filtered off, washed with water and recrystallized from aqueous ethanol (60%) (Ahmad et al., 2001). Ethyl S-ester of the triazole was prepared following the procedure reported earlier Zareef, Iqbal, Mirza & et al., 2008). Ethyl-[4-benzyl-5-(2-furyl)-(1,2,4-triazol-3-ylthio)]acetate (10 mmol) was dissolved in dry ethanol (60 ml). Dry ammonia gas was bubbled through the ester solution, with continuous stirring, for 5 hr. The progress of the reaction was monitored by TLC (silica; methanol: chloroform; 1:2). The excess solvent was distilled off under reduced pressure. The crude product was washed with cold water and recrystallized from aqueous ethanol (30%). Crystals of the title compound (I) were grown by slow evaporation of an ethanol solution over 9 days at room temperature (yield 77%).

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: aryl and methylene C—H distances were set to 0.95 and 0.99 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C). The H-atoms bonded to N4 were allowed to refine with Uiso(H) = 1.2 Ueq(N4). The final difference map was free of any chemically significant features.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding interactions in the unit cell of (I) shown by dashed lines; H-atoms not involved in H-bonds have been omitted.
2-[4-Benzyl-5-(2-furyl)-4H-1,2,4-triazol-3-ylsulfanyl]acetamide top
Crystal data top
C15H14N4O2SF(000) = 656
Mr = 314.36Dx = 1.372 Mg m3
Monoclinic, P21/cMelting point = 417–419 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.995 (9) ÅCell parameters from 5255 reflections
b = 7.261 (3) Åθ = 3.2–27.5°
c = 13.598 (8) ŵ = 0.23 mm1
β = 105.46 (2)°T = 173 K
V = 1522.1 (14) Å3Plate, colorless
Z = 40.24 × 0.08 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
3435 independent reflections
Radiation source: fine-focus sealed tube2449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2020
Tmin = 0.948, Tmax = 0.995k = 97
5255 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.034P)2 + 0.75P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3435 reflectionsΔρmax = 0.28 e Å3
206 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0052 (16)
Crystal data top
C15H14N4O2SV = 1522.1 (14) Å3
Mr = 314.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.995 (9) ŵ = 0.23 mm1
b = 7.261 (3) ÅT = 173 K
c = 13.598 (8) Å0.24 × 0.08 × 0.02 mm
β = 105.46 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3435 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2449 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.995Rint = 0.031
5255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
3435 reflectionsΔρmin = 0.26 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12862 (3)0.04606 (6)0.49096 (4)0.02689 (16)
O10.29228 (9)0.72417 (18)0.45345 (11)0.0318 (4)
O20.07346 (10)0.29345 (18)0.53495 (11)0.0330 (4)
N10.14752 (11)0.4036 (2)0.28542 (12)0.0290 (4)
N20.11490 (11)0.2402 (2)0.31391 (12)0.0287 (4)
N30.19418 (10)0.3766 (2)0.45331 (11)0.0219 (4)
N40.01125 (12)0.3863 (2)0.38142 (14)0.0280 (4)
H4A0.0253 (14)0.489 (3)0.4074 (17)0.034*
H4B0.0375 (14)0.358 (3)0.3169 (18)0.034*
C10.23596 (13)0.6584 (3)0.36615 (16)0.0279 (5)
C20.22942 (15)0.7781 (3)0.28834 (17)0.0335 (5)
H20.19470.76460.22020.040*
C30.28508 (15)0.9285 (3)0.32900 (18)0.0367 (5)
H30.29501.03470.29290.044*
C40.32076 (15)0.8915 (3)0.42773 (18)0.0355 (5)
H40.36020.96990.47360.043*
C50.19400 (13)0.4820 (3)0.36896 (15)0.0239 (4)
C60.14400 (13)0.2270 (2)0.41377 (15)0.0236 (4)
C70.05176 (13)0.0836 (2)0.39448 (15)0.0243 (4)
H7A0.00380.01600.37180.029*
H7B0.07470.10490.33460.029*
C80.03843 (13)0.2653 (3)0.44313 (15)0.0246 (4)
C90.23541 (13)0.4072 (3)0.56249 (14)0.0250 (4)
H9A0.19430.37210.60230.030*
H9B0.24860.53990.57420.030*
C100.31828 (13)0.2975 (3)0.60034 (14)0.0250 (4)
C110.32270 (15)0.1562 (3)0.66992 (16)0.0355 (5)
H110.27340.12780.69340.043*
C120.39864 (17)0.0557 (3)0.70563 (19)0.0484 (6)
H120.40120.04070.75360.058*
C130.47022 (17)0.0959 (4)0.6714 (2)0.0501 (7)
H130.52220.02730.69590.060*
C140.46651 (15)0.2352 (3)0.6017 (2)0.0437 (6)
H140.51590.26210.57790.052*
C150.39075 (14)0.3365 (3)0.56616 (17)0.0344 (5)
H150.38850.43290.51830.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0291 (3)0.0266 (3)0.0229 (3)0.0040 (2)0.0033 (2)0.0036 (2)
O10.0348 (8)0.0264 (7)0.0321 (8)0.0040 (6)0.0055 (7)0.0003 (6)
O20.0390 (9)0.0298 (7)0.0253 (8)0.0067 (7)0.0000 (7)0.0067 (6)
N10.0328 (10)0.0305 (8)0.0239 (9)0.0027 (8)0.0080 (8)0.0029 (7)
N20.0326 (10)0.0296 (8)0.0227 (9)0.0040 (8)0.0051 (8)0.0024 (7)
N30.0218 (9)0.0233 (8)0.0198 (8)0.0000 (7)0.0041 (7)0.0006 (6)
N40.0366 (11)0.0223 (8)0.0234 (9)0.0018 (8)0.0050 (8)0.0033 (7)
C10.0263 (11)0.0291 (10)0.0292 (11)0.0009 (9)0.0093 (9)0.0014 (8)
C20.0378 (13)0.0334 (11)0.0302 (12)0.0015 (10)0.0106 (10)0.0049 (9)
C30.0428 (14)0.0289 (11)0.0433 (14)0.0009 (10)0.0203 (11)0.0070 (10)
C40.0368 (13)0.0225 (10)0.0505 (15)0.0056 (9)0.0176 (12)0.0035 (9)
C50.0244 (10)0.0256 (9)0.0225 (10)0.0027 (8)0.0077 (9)0.0012 (8)
C60.0224 (10)0.0257 (9)0.0224 (11)0.0002 (8)0.0053 (9)0.0011 (8)
C70.0263 (11)0.0229 (9)0.0230 (10)0.0020 (8)0.0053 (9)0.0013 (8)
C80.0253 (11)0.0241 (9)0.0241 (11)0.0041 (8)0.0060 (9)0.0028 (8)
C90.0256 (11)0.0289 (10)0.0205 (10)0.0023 (9)0.0060 (9)0.0022 (8)
C100.0251 (11)0.0272 (10)0.0200 (10)0.0004 (8)0.0012 (9)0.0052 (8)
C110.0348 (13)0.0403 (12)0.0285 (12)0.0038 (11)0.0036 (10)0.0031 (10)
C120.0476 (16)0.0499 (14)0.0406 (15)0.0118 (13)0.0004 (12)0.0127 (11)
C130.0333 (14)0.0514 (14)0.0559 (17)0.0104 (12)0.0050 (13)0.0021 (13)
C140.0252 (12)0.0450 (13)0.0591 (17)0.0014 (11)0.0081 (12)0.0083 (12)
C150.0284 (12)0.0326 (11)0.0412 (14)0.0018 (10)0.0076 (10)0.0009 (9)
Geometric parameters (Å, º) top
S1—C61.740 (2)C3—H30.9500
S1—C71.805 (2)C4—H40.9500
O1—C11.371 (2)C7—C81.516 (3)
O1—C41.375 (2)C7—H7A0.9900
O2—C81.242 (2)C7—H7B0.9900
N1—C51.310 (3)C9—C101.514 (3)
N1—N21.392 (2)C9—H9A0.9900
N2—C61.316 (3)C9—H9B0.9900
N3—C61.372 (2)C10—C111.385 (3)
N3—C51.378 (2)C10—C151.388 (3)
N3—C91.472 (2)C11—C121.389 (3)
N4—C81.324 (3)C11—H110.9500
N4—H4A0.88 (2)C12—C131.377 (4)
N4—H4B0.89 (2)C12—H120.9500
C1—C21.351 (3)C13—C141.376 (4)
C1—C51.452 (3)C13—H130.9500
C2—C31.424 (3)C14—C151.390 (3)
C2—H20.9500C14—H140.9500
C3—C41.339 (3)C15—H150.9500
C6—S1—C797.69 (9)C8—C7—H7B110.4
C1—O1—C4105.85 (16)S1—C7—H7B110.4
C5—N1—N2107.29 (16)H7A—C7—H7B108.6
C6—N2—N1107.04 (15)O2—C8—N4124.19 (18)
C6—N3—C5104.00 (16)O2—C8—C7120.25 (17)
C6—N3—C9124.93 (15)N4—C8—C7115.56 (17)
C5—N3—C9131.06 (16)N3—C9—C10112.32 (15)
C8—N4—H4A118.8 (14)N3—C9—H9A109.1
C8—N4—H4B121.1 (14)C10—C9—H9A109.1
H4A—N4—H4B119 (2)N3—C9—H9B109.1
C2—C1—O1110.49 (18)C10—C9—H9B109.1
C2—C1—C5130.4 (2)H9A—C9—H9B107.9
O1—C1—C5119.10 (17)C11—C10—C15119.0 (2)
C1—C2—C3106.2 (2)C11—C10—C9120.18 (19)
C1—C2—H2126.9C15—C10—C9120.82 (18)
C3—C2—H2126.9C10—C11—C12120.6 (2)
C4—C3—C2106.91 (19)C10—C11—H11119.7
C4—C3—H3126.5C12—C11—H11119.7
C2—C3—H3126.5C13—C12—C11119.9 (2)
C3—C4—O1110.53 (19)C13—C12—H12120.0
C3—C4—H4124.7C11—C12—H12120.0
O1—C4—H4124.7C14—C13—C12120.1 (2)
N1—C5—N3110.81 (17)C14—C13—H13120.0
N1—C5—C1121.34 (18)C12—C13—H13120.0
N3—C5—C1127.84 (18)C13—C14—C15120.1 (2)
N2—C6—N3110.85 (16)C13—C14—H14119.9
N2—C6—S1127.53 (15)C15—C14—H14119.9
N3—C6—S1121.56 (14)C10—C15—C14120.3 (2)
C8—C7—S1106.52 (13)C10—C15—H15119.9
C8—C7—H7A110.4C14—C15—H15119.9
S1—C7—H7A110.4
C5—N1—N2—C60.5 (2)C9—N3—C6—N2178.80 (17)
C4—O1—C1—C20.4 (2)C5—N3—C6—S1176.91 (14)
C4—O1—C1—C5179.59 (18)C9—N3—C6—S13.8 (3)
O1—C1—C2—C30.1 (2)C7—S1—C6—N27.9 (2)
C5—C1—C2—C3180.0 (2)C7—S1—C6—N3175.14 (16)
C1—C2—C3—C40.5 (3)C6—S1—C7—C8172.23 (13)
C2—C3—C4—O10.7 (3)S1—C7—C8—O24.6 (2)
C1—O1—C4—C30.7 (2)S1—C7—C8—N4175.01 (15)
N2—N1—C5—N30.2 (2)C6—N3—C9—C1079.9 (2)
N2—N1—C5—C1178.64 (17)C5—N3—C9—C10101.0 (2)
C6—N3—C5—N10.2 (2)N3—C9—C10—C11113.1 (2)
C9—N3—C5—N1179.06 (18)N3—C9—C10—C1566.9 (2)
C6—N3—C5—C1178.91 (19)C15—C10—C11—C120.4 (3)
C9—N3—C5—C10.3 (3)C9—C10—C11—C12179.5 (2)
C2—C1—C5—N17.9 (3)C10—C11—C12—C130.3 (4)
O1—C1—C5—N1172.15 (18)C11—C12—C13—C140.1 (4)
C2—C1—C5—N3170.7 (2)C12—C13—C14—C150.4 (4)
O1—C1—C5—N39.3 (3)C11—C10—C15—C140.2 (3)
N1—N2—C6—N30.6 (2)C9—C10—C15—C14179.81 (19)
N1—N2—C6—S1176.61 (15)C13—C14—C15—C100.2 (3)
C5—N3—C6—N20.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2i0.88 (2)2.01 (2)2.880 (2)172 (2)
N4—H4B···N2ii0.89 (2)2.01 (2)2.881 (3)167 (2)
C9—H9B···O10.992.363.007 (3)122
Symmetry codes: (i) x, y1, z+1; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N4O2S
Mr314.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)15.995 (9), 7.261 (3), 13.598 (8)
β (°) 105.46 (2)
V3)1522.1 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.08 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.948, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
5255, 3435, 2449
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 1.04
No. of reflections3435
No. of parameters206
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O2i0.88 (2)2.01 (2)2.880 (2)172 (2)
N4—H4B···N2ii0.89 (2)2.01 (2)2.881 (3)167 (2)
C9—H9B···O10.992.363.007 (3)122
Symmetry codes: (i) x, y1, z+1; (ii) x, y1/2, z+1/2.
 

References

First citationAhmad, R., Iqbal, R., Akthar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltman, A. & Solomost, T. (1993). Hortic. Sci. 28, 201–203.  CAS Google Scholar
First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H. -B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChai, B., Qian, X., Cao, S., Liu, H. & Song, G. (2003). Arkivoc, ii, 141–145.  CrossRef Google Scholar
First citationDege, N., Andac, O., Cansız, A., Çetin, A., Şekerci, M. & Dinçer, M. (2004). Acta Cryst. E60, o1405–o1407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, H.-F. (1991). SAPI91. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHashimoto, F., Sugimoto, C. & Hayashi, H. (1990). Chem. Pharm. Bull. 38, 2532–2536.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.  Google Scholar
First citationKanazawa, S., Driscoll, M. & Struhl, K. (1988). Mol. Cell. Biol. 8, 644–673.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o425–o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Koparır, M., Cansız, A., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, o2368–o2370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZareef, M., Iqbal, R., Mirza, B., Khan, K. M., Manan, A., Asim, F. & Khan, S. W. (2008). Arkivoc, ii, 141–152.  CrossRef Google Scholar
First citationZareef, M., Iqbal, R. & Parvez, M. (2008). Acta Cryst. E64, o952–o953.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds