organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of pyridine-4-carbo­nitrile–chloranilic acid (1/1) at 180 K

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

(Received 5 June 2008; accepted 7 June 2008; online 13 June 2008)

In the crystal structure of the title compound, C6H4N2·C6H2Cl2O4, two chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydr­oxy-1,4-benzoquinone) mol­ecules are connected by O—H⋯O hydrogen bonds to form a dimeric unit. The pyridine-4-carbonitrile mol­ecules are linked on both sides of the dimer via N⋯H⋯O hydrogen bonds to give a centrosymmetric 2:2 complex of pyridine-4-carbonitrile and chloranilic acid. The H atom in the N⋯H⋯O hydrogen bond is disordered over two positions with approximately equal occupancies. The pyridine ring makes a dihedral angle of 61.54 (14)° with the chloranilic acid plane. The 2:2 units are further linked by inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds. This determination presents a siginficantly higher precision crystal structure than the previously published structure [Tomura & Yamasshita (2008[Tomura, M. & Yamasshita, Y. (2008). X-ray Struct. Anal. Online, 24, x31-x32]). X-ray Struct. Anal. Online, 24, x31–x32].

Related literature

For related structures, see, for example: Gotoh, Asaji & Ishida (2007[Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17-o20.]); Gotoh, Ishikawa & Ishida (2007[Gotoh, K., Ishikawa, R. & Ishida, H. (2007). Acta Cryst. E63, o4433.]); Tomura & Yamasshita (2008[Tomura, M. & Yamasshita, Y. (2008). X-ray Struct. Anal. Online, 24, x31-x32]).

[Scheme 1]

Experimental

Crystal data
  • C6H4N2·C6H2Cl2O4

  • Mr = 313.10

  • Monoclinic, P 21 /n

  • a = 14.9327 (8) Å

  • b = 4.9301 (3) Å

  • c = 17.0355 (10) Å

  • β = 93.0474 (18)°

  • V = 1252.37 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 180 (2) K

  • 0.18 × 0.18 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPIDII diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.900, Tmax = 0.958

  • 11539 measured reflections

  • 3567 independent reflections

  • 2165 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.176

  • S = 1.07

  • 3567 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 1.20 (10) 1.47 (10) 2.610 (3) 158 (7)
O4—H4⋯O1 0.78 (4) 2.21 (4) 2.661 (3) 118 (4)
O4—H4⋯O1i 0.78 (4) 1.99 (4) 2.656 (3) 144 (4)
N1—H1⋯O2 0.83 (12) 1.80 (13) 2.610 (3) 163 (10)
N1—H1⋯O3 0.83 (12) 2.45 (10) 2.957 (3) 120 (9)
C7—H7⋯Cl1ii 0.95 2.82 3.722 (3) 159
C8—H8⋯O4iii 0.95 2.46 3.324 (4) 151
C10—H10⋯Cl2iv 0.95 2.81 3.710 (3) 158
C11—H11⋯O3v 0.95 2.39 3.245 (4) 150
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y, -z+1; (v) -x+2, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh, Asaji & Ishida, 2007; Gotoh, Ishikawa & Ishida, 2007). This determination presents a siginficantly higher precision crystal structure than the previously published structure (Tomura & Yamasshita, 2008).

The asymmetric unit in (I) contains one pyridine-4-carbonitrile molecule and one chloranilic acid molecule (Fig. 1). Two chloranilic acid molecules related by an inversion centre are held together by O—H···O hydrogen bonds (Table 1) to form a dimer. The pyridine-4-carbonitrile molecules are linked on both sides of the dimer via N···H···O hydrogen bonds to give a centrosymmetric 2:2 complex of pyridine-4-carbonitrile and chloranilic acid (Fig. 2). The N···O distance is relatively short [2.610 (3) Å] and the H atom in the N···H···O hydrogen bond is disordered over two positions with site occupancies of 0.54 (17) and 0.46 (17). In the 2:2 unit, the pyridine and chloranilic acid planes are twised with a dihedral angle of 61.54 (14)°. The 2:2 units are further linked by C—H···O and C—H···Cl hydrogen bonds (Table 1 and Fig. 3).

Related literature top

For related structures, see, for example: Gotoh, Asaji & Ishida (2007); Gotoh, Ishikawa & Ishida (2007); Tomura & Yamasshita (2008).

Experimental top

Single crystals were obtained by slow evaporation from a methanol solution (30 ml) of chloranilic acid (500 mg) and pyridine-4-carbonitrile (250 mg).

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The H atom in the O—H···O hydrogen bond was found in a difference Fourier map and refined isotropically (refined distances given in Table 1). The H atom in the N···H···O hydrogen bond was found to be disordered over two positions in a difference Fourier map. The positional parameters of the disordered H atom were refined, with Uiso(H) = 1.2Ueq(N, O) and the site occupancy factors were refined to 0.54 (17) and 0.46 (17).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. The structure of the 2:2 unit of (I). The dashed lines indicate O—H···O hydrogen bonds (symmetry codes as Table 1).
[Figure 3] Fig. 3. A packing diagram of (I), viewed down the b axis. The dotted lines indicate C—H···Cl hydrogen bonds.
pyridine-4-carbonitrile–chloranilic acid (1/1) top
Crystal data top
C6H4N2·C6H2Cl2O4F(000) = 632.00
Mr = 313.10Dx = 1.660 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 7762 reflections
a = 14.9327 (8) Åθ = 3.0–30.0°
b = 4.9301 (3) ŵ = 0.53 mm1
c = 17.0355 (10) ÅT = 180 K
β = 93.0474 (18)°Needle, brown
V = 1252.37 (13) Å30.18 × 0.18 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2165 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.076
ω scansθmax = 30.0°
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
h = 2020
Tmin = 0.900, Tmax = 0.958k = 66
11539 measured reflectionsl = 2322
3567 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0805P)2]
where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.73 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H4N2·C6H2Cl2O4V = 1252.37 (13) Å3
Mr = 313.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.9327 (8) ŵ = 0.53 mm1
b = 4.9301 (3) ÅT = 180 K
c = 17.0355 (10) Å0.18 × 0.18 × 0.08 mm
β = 93.0474 (18)°
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3567 independent reflections
Absorption correction: numerical
(ABSCOR; Higashi, 1995)
2165 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.958Rint = 0.076
11539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.177H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
3567 reflectionsΔρmin = 0.73 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.72657 (5)1.21818 (15)0.67956 (4)0.0293 (2)
Cl20.72206 (5)0.30951 (15)0.41510 (4)0.0317 (2)
O10.57647 (13)1.0461 (5)0.56722 (13)0.0341 (5)
O20.87571 (13)0.8329 (4)0.64426 (13)0.0303 (5)
H20.914 (7)0.62 (2)0.647 (5)0.036*0.54 (17)
O30.87474 (13)0.4764 (5)0.52519 (13)0.0343 (5)
O40.57459 (14)0.6729 (5)0.45427 (14)0.0316 (5)
H40.540 (3)0.781 (8)0.466 (2)0.048 (13)*
N10.97525 (16)0.4095 (6)0.67823 (15)0.0303 (6)
H10.944 (9)0.53 (3)0.658 (6)0.036*0.46 (17)
N21.18662 (18)0.3815 (6)0.78927 (17)0.0370 (6)
C10.64869 (18)0.9233 (6)0.56045 (16)0.0256 (6)
C20.72824 (18)0.9664 (6)0.60781 (16)0.0249 (6)
C30.80477 (18)0.8142 (6)0.60089 (17)0.0248 (6)
C40.80495 (18)0.5996 (6)0.53513 (17)0.0254 (6)
C50.72339 (19)0.5549 (6)0.48720 (16)0.0266 (6)
C60.65029 (18)0.7065 (6)0.49777 (17)0.0244 (6)
C70.9672 (2)0.3253 (7)0.7517 (2)0.0354 (7)
H70.92390.40700.78310.043*
C81.0209 (2)0.1210 (7)0.78260 (18)0.0333 (7)
H81.01520.05990.83500.040*
C91.08368 (18)0.0063 (6)0.73566 (17)0.0275 (6)
C101.0914 (2)0.0969 (7)0.65940 (19)0.0372 (8)
H101.13480.02080.62710.045*
C111.0349 (2)0.2994 (7)0.6313 (2)0.0355 (7)
H111.03820.36130.57870.043*
C121.1423 (2)0.2083 (6)0.76598 (19)0.0310 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0338 (4)0.0282 (4)0.0255 (4)0.0001 (3)0.0033 (3)0.0035 (3)
Cl20.0369 (4)0.0322 (4)0.0257 (4)0.0089 (3)0.0017 (3)0.0053 (3)
O10.0287 (10)0.0399 (12)0.0328 (12)0.0106 (10)0.0062 (9)0.0093 (10)
O20.0283 (10)0.0288 (11)0.0327 (12)0.0020 (9)0.0080 (9)0.0018 (9)
O30.0287 (10)0.0407 (13)0.0333 (12)0.0107 (9)0.0004 (9)0.0012 (10)
O40.0242 (10)0.0364 (12)0.0335 (12)0.0074 (9)0.0062 (9)0.0105 (10)
N10.0276 (13)0.0333 (14)0.0292 (14)0.0032 (11)0.0055 (10)0.0018 (12)
N20.0375 (14)0.0337 (14)0.0398 (16)0.0036 (12)0.0012 (12)0.0039 (13)
C10.0263 (13)0.0280 (14)0.0223 (14)0.0038 (12)0.0001 (11)0.0014 (12)
C20.0272 (13)0.0264 (14)0.0208 (13)0.0010 (12)0.0011 (10)0.0012 (11)
C30.0212 (13)0.0289 (15)0.0239 (14)0.0010 (11)0.0030 (10)0.0045 (12)
C40.0285 (14)0.0241 (13)0.0237 (14)0.0044 (11)0.0004 (11)0.0062 (12)
C50.0305 (14)0.0282 (14)0.0209 (14)0.0022 (12)0.0004 (11)0.0027 (12)
C60.0254 (14)0.0239 (14)0.0233 (14)0.0020 (11)0.0039 (11)0.0003 (11)
C70.0345 (16)0.0420 (19)0.0294 (16)0.0084 (14)0.0018 (13)0.0026 (14)
C80.0388 (16)0.0361 (16)0.0245 (15)0.0075 (14)0.0023 (12)0.0051 (14)
C90.0264 (13)0.0268 (14)0.0286 (15)0.0002 (12)0.0060 (11)0.0001 (12)
C100.0332 (16)0.0460 (19)0.0323 (17)0.0089 (15)0.0016 (13)0.0056 (15)
C110.0319 (16)0.0425 (19)0.0321 (17)0.0059 (14)0.0006 (13)0.0106 (14)
C120.0327 (15)0.0289 (15)0.0309 (17)0.0018 (13)0.0030 (13)0.0011 (13)
Geometric parameters (Å, º) top
Cl1—C21.743 (3)C2—C31.377 (4)
Cl2—C51.723 (3)C3—C41.541 (4)
O1—C11.247 (3)C4—C51.447 (4)
O2—C31.262 (3)C5—C61.343 (4)
O2—H21.20 (14)C7—C81.375 (4)
O3—C41.226 (3)C7—H70.9500
O4—C61.329 (3)C8—C91.384 (4)
O4—H40.77 (4)C8—H80.9500
N1—C71.330 (4)C9—C101.384 (4)
N1—C111.343 (4)C9—C121.451 (4)
N1—H10.83 (17)C10—C111.376 (4)
N2—C121.138 (4)C10—H100.9500
C1—C21.416 (4)C11—H110.9500
C1—C61.512 (4)
C3—O2—H2110 (4)C4—C5—Cl2119.1 (2)
C6—O4—H4110 (3)O4—C6—C5122.0 (3)
C7—N1—C11122.0 (3)O4—C6—C1115.9 (2)
C7—N1—H2119 (3)C5—C6—C1122.1 (2)
C11—N1—H2119 (3)N1—C7—C8120.6 (3)
C7—N1—H1123 (6)N1—C7—H7119.7
C11—N1—H1115 (6)C8—C7—H7119.7
O1—C1—C2125.3 (3)C7—C8—C9118.5 (3)
O1—C1—C6117.0 (2)C7—C8—H8120.7
C2—C1—C6117.7 (2)C9—C8—H8120.7
C3—C2—C1123.0 (3)C10—C9—C8120.2 (3)
C3—C2—Cl1119.4 (2)C10—C9—C12119.4 (3)
C1—C2—Cl1117.6 (2)C8—C9—C12120.4 (3)
O2—C3—C2125.8 (3)C11—C10—C9118.7 (3)
O2—C3—C4116.2 (2)C11—C10—H10120.6
C2—C3—C4118.0 (2)C9—C10—H10120.6
O3—C4—C5122.9 (3)N1—C11—C10120.0 (3)
O3—C4—C3118.4 (2)N1—C11—H11120.0
C5—C4—C3118.7 (2)C10—C11—H11120.0
C6—C5—C4120.4 (3)N2—C12—C9178.2 (3)
C6—C5—Cl2120.5 (2)
O1—C1—C2—C3176.1 (3)C4—C5—C6—O4179.3 (3)
C6—C1—C2—C32.4 (4)Cl2—C5—C6—O40.6 (4)
O1—C1—C2—Cl12.0 (4)C4—C5—C6—C11.5 (5)
C6—C1—C2—Cl1179.5 (2)Cl2—C5—C6—C1179.9 (2)
C1—C2—C3—O2175.7 (3)O1—C1—C6—O41.7 (4)
Cl1—C2—C3—O22.4 (4)C2—C1—C6—O4179.7 (3)
C1—C2—C3—C43.8 (4)O1—C1—C6—C5177.5 (3)
Cl1—C2—C3—C4178.1 (2)C2—C1—C6—C51.1 (4)
O2—C3—C4—O35.3 (4)C11—N1—C7—C80.5 (5)
C2—C3—C4—O3175.1 (3)N1—C7—C8—C90.3 (5)
O2—C3—C4—C5175.5 (3)C7—C8—C9—C100.1 (5)
C2—C3—C4—C54.1 (4)C7—C8—C9—C12179.5 (3)
O3—C4—C5—C6176.2 (3)C8—C9—C10—C110.8 (5)
C3—C4—C5—C63.0 (4)C12—C9—C10—C11179.6 (3)
O3—C4—C5—Cl22.5 (4)C7—N1—C11—C101.4 (5)
C3—C4—C5—Cl2178.4 (2)C9—C10—C11—N11.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N11.20 (10)1.47 (10)2.610 (3)158 (7)
O4—H4···O10.78 (4)2.21 (4)2.661 (3)118 (4)
O4—H4···O1i0.78 (4)1.99 (4)2.656 (3)144 (4)
N1—H1···O20.83 (12)1.80 (13)2.610 (3)163 (10)
N1—H1···O30.83 (12)2.45 (10)2.957 (3)120 (9)
C7—H7···Cl1ii0.952.823.722 (3)159
C8—H8···O4iii0.952.463.324 (4)151
C10—H10···Cl2iv0.952.813.710 (3)158
C11—H11···O3v0.952.393.245 (4)150
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+2, y, z+1; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H4N2·C6H2Cl2O4
Mr313.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)180
a, b, c (Å)14.9327 (8), 4.9301 (3), 17.0355 (10)
β (°) 93.0474 (18)
V3)1252.37 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.18 × 0.18 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPIDII
diffractometer
Absorption correctionNumerical
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.900, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
11539, 3567, 2165
Rint0.076
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.177, 1.07
No. of reflections3567
No. of parameters192
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.73

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N11.20 (10)1.47 (10)2.610 (3)158 (7)
O4—H4···O10.78 (4)2.21 (4)2.661 (3)118 (4)
O4—H4···O1i0.78 (4)1.99 (4)2.656 (3)144 (4)
N1—H1···O20.83 (12)1.80 (13)2.610 (3)163 (10)
N1—H1···O30.83 (12)2.45 (10)2.957 (3)120 (9)
C7—H7···Cl1ii0.952.823.722 (3)159
C8—H8···O4iii0.952.463.324 (4)151
C10—H10···Cl2iv0.952.813.710 (3)158
C11—H11···O3v0.952.393.245 (4)150
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+2, y, z+1; (v) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 19550018) from the Japanese Society for the Promotion of Science.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17–o20.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGotoh, K., Ishikawa, R. & Ishida, H. (2007). Acta Cryst. E63, o4433.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomura, M. & Yamasshita, Y. (2008). X-ray Struct. Anal. Online, 24, x31–x32  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds