organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1338-o1339

1-Hy­droxy­ethyl-2-methyl-5-nitro­imidazolium 3-carb­­oxy-4-hy­droxy­benzene­sulfonate

aWuhan Grand Pharmaceutical Group Co. Ltd, No. 5 Gu Tian Road, Wuhan 430035, People's Republic of China
*Correspondence e-mail: b_yang58@126.com

(Received 15 June 2008; accepted 20 June 2008; online 25 June 2008)

Cocrystallization of 1-hydroxy­ethyl-2-methyl-5-nitroimidazole (metronidazole) and 5-sulfosalicylic acid (5-H2SSA) from methanol solution yields the title salt, C6H10N3O3+·C7H5O6S. In the crystal structure, the ions are linked by a combination of inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional framework. The hydroxyl group of the cation is disordered over two sites in a 0.860 (4):0.140 (4) ratio.

Related literature

For related literature, see: Athar et al. (2005[Athar, F., Husain, K., Abid, M., Agarwal, S. M., Coles, S. J., Hursthouse, M. B., Maurya, M. R. & Azam, A. (2005). Chem. Biodivers. 2, 1220-1330.]); Bharti et al. (2002[Bharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Gonzalez Garza, M. T., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704-2712.]); Castelli et al. (2000[Castelli, M., Malagoli, M., Lupo, L., Bofia, S., Paolucci, F., Cermelli, C., Zanca, A. & Baggio, G. (2000). J. Antimicrob. Chemother. 46, 541-550.]); Cohen-Jonathan et al. (2001[Cohen-Jonathan, E., Evans, S. M., Koch, C. J., Muschel, R. J., McKenna, W. J., Wu, J. & Bernhard, E. J. (2001). Cancer Res. 161, 2289-2293.]); Crozet et al. (2002[Crozet, M. D., Vanelle, P., Giorgi, M. & Gellis, A. (2002). Acta Cryst. C58, o496-o498.]); Galván-Tejada et al. (2002[Galván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339-348.]); Hodgkiss (1998[Hodgkiss, R. J. (1998). Anti-Cancer Drug Des. 13, 687-702.]); Kennedy et al. (2006[Kennedy, D. C., Wu, A., Patrick, B. O. & James, B. R. (2006). J. Inorg. Biochem. 100, 1974-1982.]); Meng et al. (2007[Meng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667-o670.]); Skupin et al. (1997[Skupin, S., Cooper, T. G., Frohlich, R., Prigge, J. & Haufe, G. (1997). Tetrahedron Asymm. 8, 2453-2464.]); Wu et al. (2003[Wu, A., Kennedy, D. C., Patrick, B. O. & James, B. R. (2003). Inorg. Chem. 42, 7579-7586.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N3O3+·C7H5O6S

  • Mr = 389.34

  • Monoclinic, P 21 /n

  • a = 8.8438 (3) Å

  • b = 13.0249 (4) Å

  • c = 14.148 (5) Å

  • β = 100.413 (1)°

  • V = 1602.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 294 (2) K

  • 0.35 × 0.26 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.950

  • 17399 measured reflections

  • 3503 independent reflections

  • 3156 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.06

  • 3503 reflections

  • 262 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.83 (3) 1.86 (3) 2.618 (2) 151 (3)
N2—H2⋯O6 0.81 (2) 1.97 (2) 2.7557 (19) 163 (2)
C13—H13D⋯O7i 0.97 2.46 3.280 (3) 142
C11—H11C⋯O4ii 0.96 2.55 3.457 (3) 157
O9—H9A⋯O5iii 0.82 (1) 2.129 (13) 2.940 (2) 170 (4)
O9′—H9′⋯O2iv 0.82 (1) 2.258 (13) 2.830 (2) 127 (2)
O1—H1⋯O4v 0.86 (3) 1.73 (3) 2.5801 (19) 171 (3)
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

1-Hydroxyethyl-2-methyl-5-nitrimidazole (metronidazole) is often used in the treatment of anaerobic protozoan and bacterial infections (Castelli et al., 2000; Cohen-Jonathan et al., 2001; Hodgkiss et al., 1998). However, the low solubility in water makes its absorption in human body much less than expected. Recently, many efforts have been devoted to developing some new substitutes for the medicine, i.e. i) metal-organic coordination compounds (Kennedy et al., 2006; Galván-Tejada et al., 2002; Athar et al., 2005; Bharti et al., 2002; Wu et al., 2003), ii) organic substitute derivatives (Crozet et al., 2002, Skupin et al., 1997) and iii) pharmaceutical co-crystals. In this paper, we report the 1:1 molecular adduct formed by metronidazole 5-sulfosalicylic acid (5-H2SSA), (I).

In (I), the H atom is transferred from the sulfonic acid group to the imidazole N atom (Fig.1) forming an 1:1 organic adduct, which is similar to the analogous organic adducts reported (Meng et al., 2007). The hydroxyl O atom is disordered at two sites with occupancy being 0.86 (1)/0.14 (1) for the major and minor components, respectively.

In the crystal packing, the component ions are linked by a combination of O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig.2). There are no other interactions (e.g. C—H···π and π-π) observed in the crystal structure by using PLATON (Spek, 2003).

Related literature top

For related literature, see: Athar et al. (2005); Bharti et al. (2002); Castelli et al. (2000); Cohen-Jonathan et al. (2001); Crozet et al. (2002); Galván-Tejada et al. (2002); Hodgkiss (1998); Kennedy et al. (2006); Meng et al. (2007); Skupin et al. (1997); Wu et al. (2003).

Experimental top

All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of metronidazole and 5-sulfosalicylic acid dihydrate were dissolved in methanol (10 ml). The mixture was stirred for ten minutes at 300 K and then filtered. Block colorless crystals of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel in two days.

Refinement top

H atoms bonded to C atoms were positioned geometrically [C–H = 0.93Å (aromatic), 0.97(methylene) and 0.96(methyl)] and refined in riding modes [Uiso(H) = 1.2Ueq(aromatic and methylene C) and 1.5U~eq~(methyl C]. H atoms bonded to N and O atoms were found in Fourier difference maps with the constraints of N—H = 0.86 (2) Å,O—H = 0.82 (2) Å, and Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O)]. The hydroxyl O atom is disordered at two sites with the occupancy being 0.86 (1):0.14 (1) for the major and minor components, respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown in dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the three-dimensional framework structure. Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted from the drawing.
1-Hydroxyethyl-2-methyl-5-nitroimidazolium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C6H10N3O3+·C7H5O6SF(000) = 808
Mr = 389.34Dx = 1.613 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9747 reflections
a = 8.8438 (3) Åθ = 2.5–28.2°
b = 13.0249 (4) ŵ = 0.26 mm1
c = 14.148 (5) ÅT = 294 K
β = 100.413 (1)°Block, colorless
V = 1602.9 (6) Å30.35 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3503 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
0.3° wide ω exposures scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1111
Tmin = 0.905, Tmax = 0.950k = 1616
17399 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0695P)2 + 0.4716P]
where P = (Fo2 + 2Fc2)/3
3503 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.31 e Å3
Crystal data top
C6H10N3O3+·C7H5O6SV = 1602.9 (6) Å3
Mr = 389.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8438 (3) ŵ = 0.26 mm1
b = 13.0249 (4) ÅT = 294 K
c = 14.148 (5) Å0.35 × 0.26 × 0.20 mm
β = 100.413 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3503 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3156 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.950Rint = 0.020
17399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0424 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.32 e Å3
3503 reflectionsΔρmin = 0.31 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.26714 (18)0.68882 (13)0.68052 (11)0.0389 (3)
C20.3234 (2)0.78986 (13)0.68903 (12)0.0441 (4)
C30.4814 (2)0.80629 (14)0.69525 (14)0.0520 (4)
H30.51980.87290.70070.062*
C40.5807 (2)0.72533 (14)0.69348 (13)0.0462 (4)
H40.68510.73760.69650.055*
C50.52498 (18)0.62468 (13)0.68713 (11)0.0380 (3)
C60.36914 (18)0.60747 (13)0.68103 (11)0.0380 (3)
H60.33200.54050.67720.046*
C70.1012 (2)0.67003 (14)0.67435 (13)0.0433 (4)
C80.1649 (2)0.27776 (14)0.56001 (12)0.0443 (4)
C90.2283 (2)0.36913 (14)0.54592 (13)0.0474 (4)
H90.17820.43180.53420.057*
C100.41167 (19)0.25196 (13)0.56990 (11)0.0405 (4)
C110.5662 (2)0.20700 (17)0.58081 (16)0.0591 (5)
H11A0.63760.25840.56800.089*
H11B0.56500.15120.53630.089*
H11C0.59690.18200.64520.089*
C120.2655 (3)0.09157 (14)0.58498 (13)0.0546 (5)
H12A0.19350.07640.62730.065*
H12B0.36470.06330.61370.065*
C130.2110 (3)0.04186 (16)0.48829 (16)0.0625 (6)
H13A0.20000.03150.49650.075*0.860 (4)
H13B0.11130.06940.45970.075*0.860 (4)
H13C0.29600.04040.45350.075*0.140 (4)
H13D0.18340.02880.49870.075*0.140 (4)
N10.27916 (17)0.20437 (10)0.57531 (10)0.0415 (3)
N20.38028 (18)0.35061 (12)0.55237 (11)0.0441 (3)
H20.447 (3)0.3933 (19)0.5509 (15)0.055 (6)*
N30.0052 (2)0.26065 (16)0.56153 (12)0.0582 (4)
O10.06220 (15)0.57238 (10)0.66817 (11)0.0551 (4)
H10.029 (3)0.567 (2)0.6806 (19)0.083*
O20.00803 (16)0.73868 (11)0.67490 (13)0.0644 (4)
O30.23266 (19)0.87220 (10)0.69337 (12)0.0612 (4)
H3A0.144 (4)0.849 (3)0.688 (2)0.092*
O40.80111 (14)0.55223 (12)0.72322 (11)0.0577 (4)
O50.59335 (15)0.44064 (11)0.74685 (10)0.0552 (4)
O60.62653 (14)0.48356 (9)0.58626 (9)0.0447 (3)
O70.0358 (2)0.17473 (15)0.58045 (15)0.0874 (6)
O80.0796 (2)0.33520 (18)0.54514 (15)0.0865 (6)
O90.3138 (2)0.06004 (17)0.42931 (13)0.0725 (7)0.860 (4)
H9A0.260 (4)0.065 (3)0.3759 (14)0.109*0.860 (4)
O9'0.1003 (12)0.0853 (9)0.4339 (7)0.066 (4)0.140 (4)
H9'0.13 (3)0.135 (12)0.408 (15)0.099*0.140 (4)
S10.64580 (4)0.51687 (3)0.68609 (3)0.03782 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0401 (8)0.0393 (8)0.0371 (8)0.0030 (7)0.0064 (6)0.0011 (6)
C20.0514 (10)0.0369 (8)0.0437 (9)0.0007 (7)0.0078 (7)0.0033 (7)
C30.0565 (11)0.0377 (9)0.0610 (11)0.0127 (8)0.0084 (9)0.0039 (8)
C40.0425 (9)0.0445 (9)0.0514 (10)0.0126 (7)0.0077 (7)0.0038 (7)
C50.0367 (8)0.0395 (8)0.0381 (8)0.0048 (6)0.0070 (6)0.0012 (6)
C60.0380 (8)0.0358 (8)0.0404 (8)0.0065 (6)0.0075 (6)0.0027 (6)
C70.0412 (8)0.0417 (9)0.0472 (9)0.0003 (7)0.0088 (7)0.0034 (7)
C80.0451 (9)0.0486 (10)0.0391 (8)0.0103 (7)0.0073 (7)0.0059 (7)
C90.0491 (9)0.0401 (9)0.0517 (10)0.0048 (7)0.0058 (8)0.0027 (7)
C100.0464 (9)0.0394 (8)0.0343 (8)0.0087 (7)0.0036 (6)0.0016 (6)
C110.0510 (10)0.0617 (12)0.0620 (12)0.0035 (9)0.0035 (9)0.0017 (10)
C120.0836 (14)0.0359 (9)0.0447 (9)0.0151 (9)0.0128 (9)0.0021 (7)
C130.0888 (16)0.0447 (10)0.0561 (12)0.0255 (11)0.0188 (11)0.0107 (9)
N10.0520 (8)0.0365 (7)0.0351 (7)0.0120 (6)0.0060 (6)0.0017 (5)
N20.0465 (8)0.0371 (7)0.0480 (8)0.0133 (6)0.0066 (6)0.0014 (6)
N30.0501 (9)0.0760 (12)0.0500 (9)0.0176 (9)0.0134 (7)0.0135 (8)
O10.0359 (6)0.0428 (7)0.0875 (10)0.0024 (5)0.0135 (6)0.0028 (6)
O20.0482 (7)0.0479 (8)0.0985 (12)0.0063 (6)0.0172 (7)0.0104 (7)
O30.0614 (8)0.0360 (7)0.0852 (11)0.0023 (6)0.0104 (8)0.0021 (7)
O40.0333 (6)0.0637 (9)0.0728 (9)0.0072 (6)0.0014 (6)0.0126 (7)
O50.0534 (7)0.0544 (8)0.0578 (8)0.0007 (6)0.0105 (6)0.0214 (6)
O60.0486 (7)0.0396 (6)0.0456 (7)0.0045 (5)0.0079 (5)0.0006 (5)
O70.0759 (11)0.0821 (12)0.1140 (15)0.0409 (10)0.0429 (10)0.0266 (11)
O80.0517 (9)0.1110 (16)0.0978 (13)0.0069 (10)0.0161 (9)0.0071 (11)
O90.0805 (13)0.0892 (14)0.0503 (10)0.0317 (11)0.0186 (9)0.0189 (9)
O9'0.082 (8)0.066 (7)0.047 (6)0.001 (6)0.006 (5)0.013 (5)
S10.0307 (2)0.0400 (2)0.0417 (2)0.00536 (14)0.00351 (15)0.00333 (15)
Geometric parameters (Å, º) top
C1—C61.391 (2)C11—H11B0.9600
C1—C21.405 (2)C11—H11C0.9600
C1—C71.475 (2)C12—N11.482 (2)
C2—O31.348 (2)C12—C131.512 (3)
C2—C31.400 (3)C12—H12A0.9700
C3—C41.376 (3)C12—H12B0.9700
C3—H30.9300C13—O9'1.265 (8)
C4—C51.398 (2)C13—O91.361 (3)
C4—H40.9300C13—H13A0.9700
C5—C61.384 (2)C13—H13B0.9700
C5—S11.7662 (17)C13—H13C0.9700
C6—H60.9300C13—H13D0.9700
C7—O21.217 (2)N2—H20.81 (2)
C7—O11.317 (2)N3—O71.221 (3)
C8—C91.346 (2)N3—O81.223 (3)
C8—N11.379 (2)O1—H10.86 (3)
C8—N31.434 (2)O3—H3A0.83 (3)
C9—N21.352 (2)O4—S11.4539 (12)
C9—H90.9300O5—S11.4437 (13)
C10—N21.328 (2)O6—S11.4579 (14)
C10—N11.340 (2)O9—H13C0.4764
C10—C111.469 (3)O9—H9A0.82 (1)
C11—H11A0.9600O9'—H9'0.82 (1)
C6—C1—C2119.60 (15)C13—C12—H12B109.4
C6—C1—C7120.76 (15)H12A—C12—H12B108.0
C2—C1—C7119.61 (15)O9'—C13—O994.5 (6)
O3—C2—C3118.11 (16)O9'—C13—C12116.4 (5)
O3—C2—C1123.01 (16)O9—C13—C12109.93 (18)
C3—C2—C1118.87 (16)O9'—C13—H13A115.5
C4—C3—C2120.97 (16)O9—C13—H13A109.7
C4—C3—H3119.5C12—C13—H13A109.7
C2—C3—H3119.5O9—C13—H13B109.7
C3—C4—C5120.09 (16)C12—C13—H13B109.7
C3—C4—H4120.0H13A—C13—H13B108.2
C5—C4—H4120.0O9'—C13—H13C106.6
C6—C5—C4119.46 (16)C12—C13—H13C108.5
C6—C5—S1117.90 (12)H13A—C13—H13C98.3
C4—C5—S1122.63 (13)H13B—C13—H13C121.6
C5—C6—C1120.98 (15)O9'—C13—H13D109.2
C5—C6—H6119.5O9—C13—H13D118.2
C1—C6—H6119.5C12—C13—H13D108.4
O2—C7—O1122.75 (17)H13B—C13—H13D100.4
O2—C7—C1123.05 (17)H13C—C13—H13D107.4
O1—C7—C1114.20 (15)C10—N1—C8107.09 (14)
C9—C8—N1108.85 (15)C10—N1—C12123.38 (16)
C9—C8—N3125.28 (18)C8—N1—C12129.19 (16)
N1—C8—N3125.85 (17)C10—N2—C9110.91 (15)
C8—C9—N2105.54 (16)C10—N2—H2122.7 (16)
C8—C9—H9127.2C9—N2—H2126.1 (16)
N2—C9—H9127.2O7—N3—O8124.99 (19)
N2—C10—N1107.62 (16)O7—N3—C8118.5 (2)
N2—C10—C11124.35 (17)O8—N3—C8116.46 (19)
N1—C10—C11128.03 (17)C7—O1—H1108 (2)
C10—C11—H11A109.5C2—O3—H3A105 (2)
C10—C11—H11B109.5C13—O9—H9A104 (3)
H11A—C11—H11B109.5H13C—O9—H9A119.2
C10—C11—H11C109.5C13—O9'—H9'109 (10)
H11A—C11—H11C109.5O5—S1—O4112.76 (9)
H11B—C11—H11C109.5O5—S1—O6112.23 (8)
N1—C12—C13111.03 (16)O4—S1—O6112.44 (8)
N1—C12—H12A109.4O5—S1—C5106.37 (8)
C13—C12—H12A109.4O4—S1—C5106.18 (8)
N1—C12—H12B109.4O6—S1—C5106.24 (7)
C6—C1—C2—O3176.99 (16)C11—C10—N1—C8179.79 (17)
C7—C1—C2—O31.0 (3)N2—C10—N1—C12174.03 (15)
C6—C1—C2—C31.7 (2)C11—C10—N1—C126.0 (3)
C7—C1—C2—C3179.71 (16)C9—C8—N1—C100.29 (19)
O3—C2—C3—C4178.52 (17)N3—C8—N1—C10178.63 (16)
C1—C2—C3—C40.2 (3)C9—C8—N1—C12173.61 (17)
C2—C3—C4—C51.2 (3)N3—C8—N1—C128.0 (3)
C3—C4—C5—C61.1 (3)C13—C12—N1—C1096.5 (2)
C3—C4—C5—S1179.15 (14)C13—C12—N1—C875.8 (2)
C4—C5—C6—C10.4 (2)N1—C10—N2—C90.10 (19)
S1—C5—C6—C1179.38 (12)C11—C10—N2—C9179.92 (17)
C2—C1—C6—C51.8 (2)C8—C9—N2—C100.1 (2)
C7—C1—C6—C5179.78 (15)C9—C8—N3—O7175.94 (19)
C6—C1—C7—O2179.04 (18)N1—C8—N3—O72.1 (3)
C2—C1—C7—O21.1 (3)C9—C8—N3—O82.8 (3)
C6—C1—C7—O11.0 (2)N1—C8—N3—O8179.15 (17)
C2—C1—C7—O1178.93 (16)C6—C5—S1—O542.03 (15)
N1—C8—C9—N20.23 (19)C4—C5—S1—O5138.20 (15)
N3—C8—C9—N2178.58 (16)C6—C5—S1—O4162.37 (13)
N1—C12—C13—O9'44.9 (7)C4—C5—S1—O417.86 (17)
N1—C12—C13—O961.0 (3)C6—C5—S1—O677.73 (14)
N2—C10—N1—C80.23 (18)C4—C5—S1—O6102.04 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.83 (3)1.86 (3)2.618 (2)151 (3)
N2—H2···O60.81 (2)1.97 (2)2.7557 (19)163 (2)
C13—H13D···O7i0.972.463.280 (3)142
C11—H11C···O4ii0.962.553.457 (3)157
O9—H9A···O5iii0.82 (1)2.13 (1)2.940 (2)170 (4)
O9—H9···O2iv0.82 (1)2.26 (1)2.830 (2)127 (2)
O1—H1···O4v0.86 (3)1.73 (3)2.5801 (19)171 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H10N3O3+·C7H5O6S
Mr389.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.8438 (3), 13.0249 (4), 14.148 (5)
β (°) 100.413 (1)
V3)1602.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.35 × 0.26 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.905, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
17399, 3503, 3156
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.07
No. of reflections3503
No. of parameters262
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.83 (3)1.86 (3)2.618 (2)151 (3)
N2—H2···O60.81 (2)1.97 (2)2.7557 (19)163 (2)
C13—H13D···O7i0.972.463.280 (3)142.3
C11—H11C···O4ii0.962.553.457 (3)156.7
O9—H9A···O5iii0.82 (1)2.129 (13)2.940 (2)170 (4)
O9'—H9'···O2iv0.82 (1)2.258 (13)2.830 (2)127 (2)
O1—H1···O4v0.86 (3)1.73 (3)2.5801 (19)171 (3)
Symmetry codes: (i) x, y, z+1; (ii) x+3/2, y1/2, z+3/2; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z+1; (v) x1, y, z.
 

Acknowledgements

This work was supported by Wuhan Grand Pharmaceutical Group Co. Ltd.

References

First citationAthar, F., Husain, K., Abid, M., Agarwal, S. M., Coles, S. J., Hursthouse, M. B., Maurya, M. R. & Azam, A. (2005). Chem. Biodivers. 2, 1220–1330.  Web of Science CSD CrossRef Google Scholar
First citationBharti, N., Shailendra, Coles, S. J., Hursthouse, M. B., Mayer, T. A., Gonzalez Garza, M. T., Cruz-Vega, D. E., Mata-Cardenas, B. D., Naqvi, F., Maurya, M. R. & Azam, A. (2002). Helv. Chim. Acta, 85, 2704–2712.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastelli, M., Malagoli, M., Lupo, L., Bofia, S., Paolucci, F., Cermelli, C., Zanca, A. & Baggio, G. (2000). J. Antimicrob. Chemother. 46, 541–550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCohen-Jonathan, E., Evans, S. M., Koch, C. J., Muschel, R. J., McKenna, W. J., Wu, J. & Bernhard, E. J. (2001). Cancer Res. 161, 2289–2293.  Google Scholar
First citationCrozet, M. D., Vanelle, P., Giorgi, M. & Gellis, A. (2002). Acta Cryst. C58, o496–o498.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGalván-Tejada, N., Bernès, S., Castillo-Blum, S. E., Nöth, H., Vicente, R. & Barba-Behrens, N. (2002). J. Inorg. Biochem. 91, 339–348.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHodgkiss, R. J. (1998). Anti-Cancer Drug Des. 13, 687–702.  Web of Science CAS PubMed Google Scholar
First citationKennedy, D. C., Wu, A., Patrick, B. O. & James, B. R. (2006). J. Inorg. Biochem. 100, 1974–1982.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeng, X.-G., Zhou, C.-S., Wang, L. & Liu, C.-L. (2007). Acta Cryst. C63, o667–o670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkupin, S., Cooper, T. G., Frohlich, R., Prigge, J. & Haufe, G. (1997). Tetrahedron Asymm. 8, 2453–2464.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, A., Kennedy, D. C., Patrick, B. O. & James, B. R. (2003). Inorg. Chem. 42, 7579–7586.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages o1338-o1339
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds