organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(4-pyridylsulfanylmeth­yl)benzene

aSubdivision of Food Science, Kyungnam College of Information and Technology, Busan 616-701, Republic of Korea, and bResearch Institute of Natural Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

(Received 1 June 2008; accepted 11 June 2008; online 19 June 2008)

In the title compound, C18H16N2S2, a crystallographic inversion centre lies at the centre of the benzene ring, and the two terminal 4-mercaptopyridyl groups adopt an anti geometry. Each benzene ring makes a dihedral angle of 55.4 (1)° with the plane of the benzene fragment. The crystal structure is stabilized by C—H⋯π inter­actions between a benzene H atom and a pyridyl ring of a neighbouring mol­ecule. In addition, the crystal structure exhibits inter­molecular C—H⋯N inter­actions.

Related literature

For details of the preparation and related structures of 1,4-bis­(2-pyridyl-sulfanylmeth­yl)benezene derivatives, see: Atherton et al. (1999[Atherton, Z., Goodgame, D. M. L., Menzer, S. & Williams, D. J. (1999). Polyhedron, 18, 273-279.]); McMorran & Steel (2003[McMorran, D. A. & Steel, P. J. (2003). Tetrahedron, 59, 3701-3707.]); For the structures of Co(II) and Ag (I)[link] complexes of 1,4-bis­(2-pyridylsulfanylmeth­yl)benezene, see: Hartshorn & Steel (1998[Hartshorn, C. M. & Steel, P. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3935-3940.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2S2

  • Mr = 324.45

  • Monoclinic, P 21 /c

  • a = 7.145 (1) Å

  • b = 6.1667 (8) Å

  • c = 17.954 (2) Å

  • β = 90.391 (3)°

  • V = 791.03 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 (2) K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4706 measured reflections

  • 1717 independent reflections

  • 893 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.121

  • S = 0.96

  • 1717 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of N1/C1/C2/C3/C5 pyridyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N1i 0.93 2.61 3.484 (4) 158
C8—H8⋯Cgii 0.93 2.77 3.560 (4) 143
Symmetry codes: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The reaction of α,α'-dibromo-p-xylene with 4-mercaptopyridine afforded the title compound, in which the crystallographic inversion centre lies on the centre of the benzene ring. Therefore, the asymmetric unit consists of a half of molecule and the two 4-mercaptopyridyl groups adopt an anti-geometry (Fig. 1). All bond lengths and angles show normal value (Allen et al., 1987). The dihedral angle between the plane of benzene and the terminal pyridyl ring is 55.4 (1)°, which is smaller than those of related structures (Atherton et al., 1999; Hartshorn & Steel, 1998).

The crystal packing (Fig. 2) is stabilized by C—H···π interactions between a benzene H atom and the pyridyl ring of neighbouring molecule, with a C8—H8···Cg separation of 2.77 Å (Fig. 2 and Table 1; Cg is the centroid of N1/C1/C2/C3/C5 pyridyl ring, symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by intermolecular C—H···N hydrogen bonds between a pyridyl H atom and the pyridine N atom of neighbouring molecule, with a C1—H1···N1i separation of 2.61 Å (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For details of the preparation and related structures of 1,4-bis(2-pyridyl-sulfanylmethyl)benezene derivatives, see: Atherton et al. (1999); McMorran & Steel (2003); For the structures of Co(II) and Ag (I) complexes of 1,4-bis(2-pyridylsulfanylmethyl)benezene, see: Hartshorn & Steel (1998). Cg is the centroid of N1/C1/C2/C3/C5 pyridyl ring For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of α,α'-dibromo-p-xylene with 4-mercaptopyridine in acetonitrile according to reported methods (Atherton et al., 1999; McMorran & Steel, 2003). Single crystal suitable for X-ray analysis were obtained by evaporation of a solution of the title compound in acetonitrile.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso =1.2Ueq(C) for aromatic and 0.97 Å, Uiso = 1.2Ueq(C) for CH2 atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. [Symmetry code: (i) -x + 1, -y + 1, -z + 1]
[Figure 2] Fig. 2. C—H···π and C—H···N interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x-1, y+1/2, -z+3/2; (iii) -x-1, y-1/2, -z+3/2; (iv) x+2, -y+1/2, z-1/2; (v) x+2, -y+3/2, z-1/2; (vi) -x, -y, -z+1;(vii) x+1, y+1, z.]
1,4-Bis(4-pyridylsulfanylmethyl)benzene top
Crystal data top
C18H16N2S2F(000) = 340
Mr = 324.45Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4706 reflections
a = 7.145 (1) Åθ = 2.3–27.0°
b = 6.1667 (8) ŵ = 0.33 mm1
c = 17.954 (2) ÅT = 298 K
β = 90.391 (3)°Plate, colourless
V = 791.03 (18) Å30.35 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
893 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.074
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
ϕ and ω scansh = 97
4706 measured reflectionsk = 77
1717 independent reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0516P)2]
where P = (Fo2 + 2Fc2)/3
1717 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H16N2S2V = 791.03 (18) Å3
Mr = 324.45Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.145 (1) ŵ = 0.33 mm1
b = 6.1667 (8) ÅT = 298 K
c = 17.954 (2) Å0.35 × 0.20 × 0.15 mm
β = 90.391 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
893 reflections with I > 2σ(I)
4706 measured reflectionsRint = 0.074
1717 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.96Δρmax = 0.32 e Å3
1717 reflectionsΔρmin = 0.17 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01648 (12)0.27398 (12)0.56971 (5)0.0651 (3)
N10.2740 (4)0.1917 (5)0.72963 (13)0.0677 (8)
C10.3414 (4)0.0057 (6)0.71296 (17)0.0632 (9)
H10.45330.04860.73460.076*
C20.2540 (4)0.1478 (5)0.66562 (16)0.0587 (8)
H20.30520.28420.65700.070*
C30.0897 (4)0.0876 (4)0.63081 (15)0.0501 (7)
C40.0215 (4)0.1175 (5)0.64684 (15)0.0561 (8)
H40.08750.16720.62450.067*
C50.1161 (5)0.2463 (5)0.69596 (15)0.0593 (8)
H50.06600.38220.70650.071*
C60.2555 (4)0.1735 (4)0.56468 (16)0.0620 (9)
H6A0.30030.13730.61430.074*
H6B0.25880.04300.53450.074*
C70.3805 (4)0.3443 (4)0.53083 (15)0.0493 (7)
C80.4517 (4)0.3178 (4)0.46027 (16)0.0537 (8)
H80.41900.19610.43250.064*
C90.4290 (4)0.5300 (5)0.56966 (15)0.0554 (8)
H90.38010.55260.61690.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0593 (5)0.0556 (5)0.0806 (6)0.0050 (4)0.0101 (4)0.0205 (4)
N10.0699 (19)0.0749 (19)0.0584 (16)0.0087 (15)0.0095 (14)0.0062 (14)
C10.051 (2)0.079 (2)0.059 (2)0.0008 (18)0.0091 (16)0.0047 (18)
C20.057 (2)0.0542 (18)0.065 (2)0.0081 (16)0.0015 (16)0.0020 (17)
C30.0483 (19)0.0475 (17)0.0546 (17)0.0018 (14)0.0016 (14)0.0025 (14)
C40.059 (2)0.0474 (17)0.0616 (19)0.0032 (15)0.0121 (16)0.0005 (16)
C50.066 (2)0.0527 (18)0.0595 (19)0.0022 (17)0.0004 (17)0.0065 (15)
C60.056 (2)0.0492 (17)0.081 (2)0.0074 (14)0.0188 (17)0.0112 (16)
C70.0475 (18)0.0459 (17)0.0546 (18)0.0039 (13)0.0049 (15)0.0074 (14)
C80.0600 (19)0.0493 (17)0.0519 (18)0.0006 (15)0.0007 (15)0.0040 (15)
C90.060 (2)0.0618 (19)0.0443 (17)0.0053 (17)0.0105 (15)0.0009 (15)
Geometric parameters (Å, º) top
S1—C31.764 (3)C5—H50.9300
S1—C61.820 (3)C6—C71.511 (4)
N1—C51.327 (4)C6—H6A0.9700
N1—C11.342 (4)C6—H6B0.9700
C1—C21.374 (4)C7—C81.378 (3)
C1—H10.9300C7—C91.383 (4)
C2—C31.385 (4)C8—C9i1.379 (4)
C2—H20.9300C8—H80.9300
C3—C41.385 (4)C9—C8i1.379 (4)
C4—C51.369 (4)C9—H90.9300
C4—H40.9300
C3—S1—C6102.52 (13)C4—C5—H5117.6
C5—N1—C1115.7 (3)C7—C6—S1109.87 (18)
N1—C1—C2123.6 (3)C7—C6—H6A109.7
N1—C1—H1118.2S1—C6—H6A109.7
C2—C1—H1118.2C7—C6—H6B109.7
C1—C2—C3119.9 (3)S1—C6—H6B109.7
C1—C2—H2120.1H6A—C6—H6B108.2
C3—C2—H2120.1C8—C7—C9117.9 (3)
C2—C3—C4116.7 (3)C8—C7—C6120.7 (3)
C2—C3—S1118.4 (2)C9—C7—C6121.4 (3)
C4—C3—S1124.9 (2)C7—C8—C9i120.7 (3)
C5—C4—C3119.3 (3)C7—C8—H8119.7
C5—C4—H4120.4C9i—C8—H8119.7
C3—C4—H4120.4C8i—C9—C7121.3 (3)
N1—C5—C4124.8 (3)C8i—C9—H9119.3
N1—C5—H5117.6C7—C9—H9119.3
C5—N1—C1—C21.4 (4)C3—C4—C5—N11.2 (5)
N1—C1—C2—C31.6 (5)C3—S1—C6—C7165.4 (2)
C1—C2—C3—C40.4 (4)S1—C6—C7—C8109.1 (3)
C1—C2—C3—S1179.4 (2)S1—C6—C7—C971.7 (3)
C6—S1—C3—C2160.6 (2)C9—C7—C8—C9i1.5 (5)
C6—S1—C3—C419.7 (3)C6—C7—C8—C9i177.7 (2)
C2—C3—C4—C50.9 (4)C8—C7—C9—C8i1.5 (5)
S1—C3—C4—C5179.3 (2)C6—C7—C9—C8i177.7 (3)
C1—N1—C5—C40.1 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1ii0.932.613.484 (4)158
C8—H8···Cgiii0.932.773.560 (4)143
Symmetry codes: (ii) x1, y+1/2, z+3/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC18H16N2S2
Mr324.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.145 (1), 6.1667 (8), 17.954 (2)
β (°) 90.391 (3)
V3)791.03 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4706, 1717, 893
Rint0.074
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.121, 0.96
No. of reflections1717
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.17

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.613.484 (4)157.6
C8—H8···Cgii0.932.773.560 (4)143.0
Symmetry codes: (i) x1, y+1/2, z+3/2; (ii) x, y, z+1.
 

Acknowledgements

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007–359-C00019).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtherton, Z., Goodgame, D. M. L., Menzer, S. & Williams, D. J. (1999). Polyhedron, 18, 273–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHartshorn, C. M. & Steel, P. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3935–3940.  Web of Science CSD CrossRef Google Scholar
First citationMcMorran, D. A. & Steel, P. J. (2003). Tetrahedron, 59, 3701–3707.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds