organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Ethyl-3,6-di­formyl-9H-carbazole

aState Key Laboratory of Crystalline Materials, Institute of Crystalline Materials, Shandong University, Jinan 250100, People's Republic of China, bSchool of Materials Science and Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and cSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: yuxq@sdu.edu.cn

(Received 6 May 2008; accepted 12 June 2008; online 19 June 2008)

The structure of the title compound, C16H13NO2, was determined as a part of a project on the synthesis of new compounds which can make two-photon absorptions. In the crystal structure, both aldehyde groups are located within the carbazole plane. One of these groups is disordered and was refined using a split model with site-occupation factors for each position of 0.5.

Related literature

For the synthesis of 9-ethyicarbazole, see: Li et al. (2001[Li, Z., Li, J. & Qin, J. G. (2001). Chemistry Reagent, 23, 297-297.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO2

  • Mr = 251.27

  • Monoclinic, P 21 /n

  • a = 13.5475 (3) Å

  • b = 6.69540 (10) Å

  • c = 14.1840 (2) Å

  • β = 100.5100 (10)°

  • V = 1264.99 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.46 × 0.32 × 0.28 mm

Data collection
  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.978

  • 7890 measured reflections

  • 2810 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.05

  • 2810 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Related literature top

For the synthesis of 9-ethyicarbazole, see: Li et al. (2001).

Experimental top

9-Ethylcarbazole was synthesized according to the literature (Li et al. , 2001). Anhydrous DMF (22 mL, 0.3 mol) was added dropwisely to POCl3 (28 ml, 0.3 mol) under stirring in an ice bath. After 30 minute a white precipitate is obtained and a solution of 9-ethylcarbazole (3.155 g, 16 mmol) in DMF (20 mL) were added. The reaction mixture was slowly heated to 373 K and stirred at this temperature for 30 h and then cooled to room temperature. The brown viscous oily production was poured into the ice-water and shaken; the pH value of the solution was adjusted to 8 by dropping aqueous sodium hydroxide and sodium bicarbonate. It was stirred for another 2 h at pH=8 at room temperature. The aqueous layer was extracted with dichloromethane (3 × 100 ml) and the combined organic layers were washed three times with 100 mL of water and dried over anhydrous magnesium sulfate. Afterwards the solvent was evaporated under reduced pressure. The residue was dissolved in a minimal amount of dichloromethane and then purified by silica-gel column chromatography using dichloromethane as eluent. The product was recrystallized from dichloromethane to give high quality dark yellow crystals used for X-ray structure analysis.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups). Their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) of the equivalent displacement parameter of their parent atoms. The O2 oxygen atom is disordered over two positions and was refined using a split model with half occupancy for each site.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia,1999).

Figures top
[Figure 1] Fig. 1. : The molecular structure of title compound with labelling and 50% probability displacement ellipsoids.
9-Ethyl-3,6-diformyl-9H-carbazole top
Crystal data top
C16H13NO2F(000) = 528
Mr = 251.27Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5475 (3) ÅCell parameters from 3121 reflections
b = 6.6954 (1) Åθ = 2.9–27.0°
c = 14.1840 (2) ŵ = 0.09 mm1
β = 100.510 (1)°T = 293 K
V = 1264.99 (4) Å3Block, colourless
Z = 40.46 × 0.32 × 0.28 mm
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2810 independent reflections
Radiation source: fine-focus sealed tube2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1517
Tmin = 0.962, Tmax = 0.978k = 88
7890 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.1926P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2810 reflectionsΔρmax = 0.17 e Å3
183 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (3)
Crystal data top
C16H13NO2V = 1264.99 (4) Å3
Mr = 251.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.5475 (3) ŵ = 0.09 mm1
b = 6.6954 (1) ÅT = 293 K
c = 14.1840 (2) Å0.46 × 0.32 × 0.28 mm
β = 100.510 (1)°
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2810 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
2123 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.978Rint = 0.016
7890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2810 reflectionsΔρmin = 0.16 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.02612 (11)0.7739 (2)0.65681 (10)0.1009 (5)
O20.8577 (2)0.1440 (4)1.19028 (19)0.0963 (8)0.50
O2'0.9276 (2)0.1336 (4)1.1217 (2)0.0830 (8)0.50
N10.73234 (8)0.68042 (17)0.96028 (7)0.0500 (3)
C10.55071 (11)0.7452 (3)0.91838 (13)0.0713 (4)
H1A0.55130.74640.85080.107*
H1B0.49890.83270.93180.107*
H1C0.53810.61190.93810.107*
C20.65035 (10)0.8149 (2)0.97202 (11)0.0573 (4)
H2A0.66420.94700.94950.069*
H2B0.64730.82521.03960.069*
C30.79421 (9)0.69945 (19)0.89373 (9)0.0459 (3)
C40.79749 (10)0.8498 (2)0.82587 (10)0.0557 (3)
H40.75320.95710.81980.067*
C50.86839 (11)0.8333 (2)0.76856 (10)0.0585 (4)
H50.87150.93080.72250.070*
C60.93648 (10)0.6734 (2)0.77748 (9)0.0523 (3)
C70.93244 (9)0.5240 (2)0.84424 (8)0.0485 (3)
H70.97740.41780.85010.058*
C80.86064 (9)0.53478 (19)0.90209 (8)0.0440 (3)
C90.83555 (9)0.40894 (19)0.97708 (8)0.0452 (3)
C100.75611 (9)0.5055 (2)1.01106 (8)0.0473 (3)
C110.71439 (11)0.4259 (2)1.08601 (10)0.0582 (4)
H110.66270.49071.10880.070*
C120.75280 (12)0.2485 (2)1.12461 (10)0.0626 (4)
H120.72630.19231.17450.075*
C130.83086 (11)0.1487 (2)1.09134 (9)0.0573 (4)
C140.87244 (10)0.2299 (2)1.01732 (9)0.0510 (3)
H140.92440.16460.99520.061*
C151.01501 (12)0.6612 (3)0.71893 (11)0.0666 (4)
H151.06030.55590.73150.080*
C160.87062 (18)0.0411 (3)1.13397 (14)0.0825 (6)
H16A0.92200.08761.10430.099*0.50
H16B0.83770.08711.18180.099*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1167 (11)0.1034 (10)0.1002 (9)0.0055 (8)0.0663 (9)0.0204 (8)
O20.128 (2)0.0828 (17)0.0829 (16)0.0009 (16)0.0324 (16)0.0299 (14)
O2'0.0887 (18)0.0589 (14)0.1029 (18)0.0237 (13)0.0213 (14)0.0161 (13)
N10.0436 (6)0.0549 (7)0.0544 (6)0.0046 (5)0.0166 (5)0.0001 (5)
C10.0504 (8)0.0671 (10)0.0958 (11)0.0074 (7)0.0122 (8)0.0025 (9)
C20.0514 (8)0.0556 (8)0.0688 (8)0.0064 (6)0.0212 (6)0.0073 (7)
C30.0385 (6)0.0522 (7)0.0475 (6)0.0009 (5)0.0090 (5)0.0009 (5)
C40.0505 (7)0.0547 (8)0.0619 (8)0.0052 (6)0.0103 (6)0.0085 (6)
C50.0575 (8)0.0622 (9)0.0573 (7)0.0046 (7)0.0142 (6)0.0120 (7)
C60.0461 (7)0.0622 (8)0.0505 (7)0.0081 (6)0.0140 (5)0.0001 (6)
C70.0404 (6)0.0550 (8)0.0509 (6)0.0004 (5)0.0103 (5)0.0014 (6)
C80.0386 (6)0.0494 (7)0.0440 (6)0.0013 (5)0.0078 (5)0.0001 (5)
C90.0405 (6)0.0512 (7)0.0441 (6)0.0021 (5)0.0078 (5)0.0012 (5)
C100.0429 (6)0.0535 (7)0.0461 (6)0.0024 (5)0.0102 (5)0.0035 (5)
C110.0570 (8)0.0691 (9)0.0531 (7)0.0048 (7)0.0218 (6)0.0034 (7)
C120.0695 (9)0.0721 (10)0.0492 (7)0.0153 (8)0.0189 (7)0.0023 (7)
C130.0637 (9)0.0550 (8)0.0507 (7)0.0098 (7)0.0040 (6)0.0046 (6)
C140.0483 (7)0.0521 (8)0.0519 (7)0.0001 (6)0.0074 (5)0.0003 (6)
C150.0654 (9)0.0742 (10)0.0657 (9)0.0152 (8)0.0268 (7)0.0035 (8)
C160.1016 (15)0.0660 (11)0.0722 (11)0.0161 (11)0.0043 (10)0.0172 (10)
Geometric parameters (Å, º) top
O1—C151.1902 (19)C6—C71.3852 (18)
O2—C161.093 (3)C6—C151.466 (2)
O2—H16B0.4697C7—C81.3842 (17)
O2'—C161.029 (3)C7—H70.9300
N1—C31.3778 (16)C8—C91.4453 (17)
N1—C101.3818 (17)C9—C141.3816 (18)
N1—C21.4628 (16)C9—C101.4134 (17)
C1—C21.498 (2)C10—C111.3974 (18)
C1—H1A0.9600C11—C121.370 (2)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C131.403 (2)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—C141.3896 (19)
C3—C41.3990 (18)C13—C161.467 (2)
C3—C81.4144 (17)C14—H140.9300
C4—C51.371 (2)C15—H150.9300
C4—H40.9300C16—H16A0.9300
C5—C61.404 (2)C16—H16B0.9300
C5—H50.9300
C3—N1—C10108.81 (10)C7—C8—C9133.70 (12)
C3—N1—C2126.20 (11)C3—C8—C9106.54 (11)
C10—N1—C2124.89 (11)C14—C9—C10119.79 (11)
C2—C1—H1A109.5C14—C9—C8133.94 (12)
C2—C1—H1B109.5C10—C9—C8106.27 (11)
H1A—C1—H1B109.5N1—C10—C11129.17 (12)
C2—C1—H1C109.5N1—C10—C9109.24 (11)
H1A—C1—H1C109.5C11—C10—C9121.58 (13)
H1B—C1—H1C109.5C12—C11—C10117.24 (13)
N1—C2—C1112.52 (12)C12—C11—H11121.4
N1—C2—H2A109.1C10—C11—H11121.4
C1—C2—H2A109.1C11—C12—C13122.20 (13)
N1—C2—H2B109.1C11—C12—H12118.9
C1—C2—H2B109.1C13—C12—H12118.9
H2A—C2—H2B107.8C14—C13—C12120.13 (13)
N1—C3—C4129.60 (12)C14—C13—C16118.77 (16)
N1—C3—C8109.13 (11)C12—C13—C16121.09 (15)
C4—C3—C8121.26 (12)C9—C14—C13119.05 (13)
C5—C4—C3117.61 (13)C9—C14—H14120.5
C5—C4—H4121.2C13—C14—H14120.4
C3—C4—H4121.2O1—C15—C6125.94 (17)
C4—C5—C6121.85 (13)O1—C15—H15117.0
C4—C5—H5119.1C6—C15—H15117.0
C6—C5—H5119.1O2'—C16—C13133.0 (3)
C7—C6—C5120.34 (12)O2—C16—C13138.7 (3)
C7—C6—C15118.06 (13)O2—C16—H16A110.6
C5—C6—C15121.58 (13)C13—C16—H16A110.6
C8—C7—C6119.15 (12)O2'—C16—H16B113.5
C8—C7—H7120.4C13—C16—H16B113.5
C6—C7—H7120.4H16A—C16—H16B135.8
C7—C8—C3119.75 (11)
C3—N1—C2—C194.54 (16)C3—N1—C10—C11179.12 (13)
C10—N1—C2—C181.23 (17)C2—N1—C10—C114.5 (2)
C10—N1—C3—C4179.26 (13)C3—N1—C10—C90.26 (14)
C2—N1—C3—C42.9 (2)C2—N1—C10—C9176.66 (11)
C10—N1—C3—C80.76 (13)C14—C9—C10—N1179.99 (11)
C2—N1—C3—C8177.10 (12)C8—C9—C10—N10.34 (13)
N1—C3—C4—C5179.09 (13)C14—C9—C10—C111.04 (18)
C8—C3—C4—C50.88 (19)C8—C9—C10—C11178.63 (11)
C3—C4—C5—C60.7 (2)N1—C10—C11—C12179.57 (12)
C4—C5—C6—C71.2 (2)C9—C10—C11—C120.83 (19)
C4—C5—C6—C15177.23 (13)C10—C11—C12—C130.1 (2)
C5—C6—C7—C80.16 (19)C11—C12—C13—C140.5 (2)
C15—C6—C7—C8178.34 (12)C11—C12—C13—C16179.97 (14)
C6—C7—C8—C31.36 (17)C10—C9—C14—C130.47 (18)
C6—C7—C8—C9179.95 (13)C8—C9—C14—C13179.09 (13)
N1—C3—C8—C7178.05 (11)C12—C13—C14—C90.2 (2)
C4—C3—C8—C71.92 (18)C16—C13—C14—C9179.78 (12)
N1—C3—C8—C90.96 (13)C7—C6—C15—O1177.41 (16)
C4—C3—C8—C9179.07 (12)C5—C6—C15—O14.1 (2)
C7—C8—C9—C141.6 (2)C14—C13—C16—O2'1.6 (4)
C3—C8—C9—C14179.62 (13)C12—C13—C16—O2'177.9 (3)
C7—C8—C9—C10178.03 (13)C14—C13—C16—O2179.8 (3)
C3—C8—C9—C100.78 (13)C12—C13—C16—O20.3 (4)

Experimental details

Crystal data
Chemical formulaC16H13NO2
Mr251.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.5475 (3), 6.6954 (1), 14.1840 (2)
β (°) 100.510 (1)
V3)1264.99 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.32 × 0.28
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.962, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
7890, 2810, 2123
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.05
No. of reflections2810
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia,1999).

 

Acknowledgements

This work was supported by a grant for the National Science Foundation of China (50673053), the State Key Program of China (2004CB719803), NSFC/RGC (50218001), the National Science Foundation of China (50173015). We also thank Dr Wang Xin Qiang for looking at this paper.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, Z., Li, J. & Qin, J. G. (2001). Chemistry Reagent, 23, 297–297.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds