organic compounds
N,N-Dibenzylmethanesulfonamide
aDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea, and bDepartment of Chemistry, Korea University, Seoul 136-701, Republic of Korea
*Correspondence e-mail: ajbuglass@kaist.ac.kr
Molecules of the title compound, C15H17NO2S, which was synthesized from methanesulfonyl chloride and dibenzylamine, are packed in antiparallel arrays along the c axis, with the methyl group of one molecule dovetailed between the two phenyl rings of the next molecule. Along any such array, the sulfonyl O atoms protrude alternately up and down.
Related literature
For crystallographic literature on et al. (2007). For literature on N,N-dialkylmethanesulfonamides, see: van Otterlo et al. (2004). For the synthesis, see: Banks & Hudson (1986); Stretter et al. (1969); Youn & Herrmann (1986).
such as methanesulfonamides, see: GowdaExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808015055/ng2454sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015055/ng2454Isup2.hkl
Methanesulfonyl chloride was prepared by the method of Youn and Herrmann, but using an excess of sulfuryl chloride (viz. methyl disulfide (0.01 mol), acetic acid (0.02 mol) and sulfuryl chloride (0.04 mol)). The title compound was prepared by the method of Stretter et al., using dibenzylamine (1.5 g, 8 mmol), methanesulfonyl chloride (458 mg, 4 mmol) and dichloromethane (30 ml). The crude product was purified by
on silica gel using dichloromethane as giving N,N-dibenzylmethanesulfonamide as white crystals (1.05 g, 96%), mp, 83–85°C. Literature mp. 84–85 oC (Banks & Hudson, 1986).Crystals were obtained by evaporation of solvent from a solution of (I) in dichoromethane/hexane (1:4).
FTIR (KBr) (cm-1) 3088, 3062, 3009, 1496, 1446, 1438, 1382, 1318, 1265, 1207, 1132, 1091, 1056, 949
1H NMR (400 MHz, CDCl3, p.p.m. with respect to TMS) 7.39–7.29 (m, 10H), 4.35 (s, 4H), 2.77 (s, 3H)
13C NMR (100 MHz, CDCl3, p.p.m. with respect to TMS) 135.4, 128.7, 128.0, 49.8, 40.2
EIMS m/z (%) 275 (M+., 19), 196 (M+. - CH3SO2., 84), 195 (82), 184 (84), 91 (100)
Anal. Calcd. for C15H17NO2S (%): C, 65.45; H, 6.18; N, 5.09; S, 11.63. Found (%): C, 65.22; H, 6.15; N, 5.03; S, 11.80.
H atoms were located on a difference Fourier map, positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for CH3) times Ueq(C).
Data collection: APEX2 (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. The packing of (I), viewed down the a axis. |
C15H17NO2S | F(000) = 584 |
Mr = 275.36 | Dx = 1.303 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3097 reflections |
a = 6.0948 (1) Å | θ = 3.0–26.3° |
b = 13.4498 (4) Å | µ = 0.23 mm−1 |
c = 17.1293 (4) Å | T = 293 K |
V = 1404.15 (6) Å3 | Plate, white |
Z = 4 | 0.32 × 0.10 × 0.08 mm |
Bruker APEXII diffractometer | 3421 independent reflections |
Radiation source: fine-focus sealed tube | 2694 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 28.3°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→7 |
Tmin = 0.931, Tmax = 0.982 | k = −17→15 |
8426 measured reflections | l = −18→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0517P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
3421 reflections | Δρmax = 0.14 e Å−3 |
173 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1428 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (8) |
C15H17NO2S | V = 1404.15 (6) Å3 |
Mr = 275.36 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.0948 (1) Å | µ = 0.23 mm−1 |
b = 13.4498 (4) Å | T = 293 K |
c = 17.1293 (4) Å | 0.32 × 0.10 × 0.08 mm |
Bruker APEXII diffractometer | 3421 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2694 reflections with I > 2σ(I) |
Tmin = 0.931, Tmax = 0.982 | Rint = 0.025 |
8426 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.095 | Δρmax = 0.14 e Å−3 |
S = 1.10 | Δρmin = −0.29 e Å−3 |
3421 reflections | Absolute structure: Flack (1983), 1428 Friedel pairs |
173 parameters | Absolute structure parameter: 0.01 (8) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6426 (3) | 0.26792 (15) | 0.41616 (10) | 0.0536 (4) | |
H1 | 0.7540 | 0.2208 | 0.4192 | 0.064* | |
C2 | 0.6736 (4) | 0.36030 (17) | 0.44782 (11) | 0.0659 (6) | |
H2 | 0.8057 | 0.3754 | 0.4723 | 0.079* | |
C3 | 0.5109 (4) | 0.43099 (17) | 0.44367 (11) | 0.0697 (6) | |
H3 | 0.5322 | 0.4935 | 0.4656 | 0.084* | |
C4 | 0.3181 (4) | 0.40880 (15) | 0.40713 (12) | 0.0645 (6) | |
H4 | 0.2082 | 0.4566 | 0.4036 | 0.077* | |
C5 | 0.2856 (3) | 0.31565 (14) | 0.37533 (11) | 0.0518 (5) | |
H5 | 0.1535 | 0.3011 | 0.3507 | 0.062* | |
C6 | 0.4471 (3) | 0.24390 (13) | 0.37967 (9) | 0.0437 (4) | |
C7 | 0.4079 (3) | 0.14042 (14) | 0.34963 (10) | 0.0515 (5) | |
H7A | 0.5423 | 0.1022 | 0.3542 | 0.062* | |
H7B | 0.2971 | 0.1084 | 0.3816 | 0.062* | |
C8 | 0.3166 (3) | 0.30315 (13) | 0.15342 (10) | 0.0476 (4) | |
H8 | 0.2041 | 0.2963 | 0.1897 | 0.057* | |
C9 | 0.3116 (4) | 0.38057 (14) | 0.09996 (11) | 0.0551 (5) | |
H9 | 0.1967 | 0.4260 | 0.1010 | 0.066* | |
C10 | 0.4744 (4) | 0.39038 (15) | 0.04575 (11) | 0.0614 (5) | |
H10 | 0.4698 | 0.4422 | 0.0099 | 0.074* | |
C11 | 0.6452 (4) | 0.32373 (16) | 0.04415 (11) | 0.0626 (5) | |
H11 | 0.7554 | 0.3301 | 0.0069 | 0.075* | |
C12 | 0.6529 (3) | 0.24733 (14) | 0.09789 (10) | 0.0501 (4) | |
H12 | 0.7698 | 0.2029 | 0.0972 | 0.060* | |
C13 | 0.4884 (3) | 0.23622 (12) | 0.15276 (9) | 0.0381 (4) | |
C14 | 0.5104 (3) | 0.15067 (15) | 0.20925 (10) | 0.0508 (4) | |
H14A | 0.5184 | 0.0895 | 0.1793 | 0.061* | |
H14B | 0.6485 | 0.1579 | 0.2368 | 0.061* | |
N1 | 0.3353 (2) | 0.14007 (10) | 0.26726 (7) | 0.0411 (3) | |
S1 | 0.13533 (6) | 0.06492 (3) | 0.24587 (3) | 0.04857 (14) | |
O1 | −0.0312 (2) | 0.07909 (13) | 0.30334 (10) | 0.0755 (4) | |
O2 | 0.0845 (2) | 0.08028 (11) | 0.16558 (8) | 0.0706 (4) | |
C15 | 0.2358 (4) | −0.05725 (14) | 0.25679 (12) | 0.0625 (5) | |
H15A | 0.1233 | −0.1038 | 0.2426 | 0.094* | |
H15B | 0.2779 | −0.0679 | 0.3101 | 0.094* | |
H15C | 0.3610 | −0.0665 | 0.2235 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0547 (10) | 0.0613 (12) | 0.0448 (10) | 0.0043 (11) | −0.0069 (9) | 0.0037 (9) |
C2 | 0.0788 (14) | 0.0725 (15) | 0.0466 (11) | −0.0145 (13) | −0.0131 (10) | −0.0001 (10) |
C3 | 0.1070 (17) | 0.0532 (12) | 0.0490 (12) | −0.0108 (15) | 0.0061 (12) | −0.0087 (10) |
C4 | 0.0838 (15) | 0.0532 (12) | 0.0565 (13) | 0.0162 (12) | 0.0131 (11) | −0.0011 (10) |
C5 | 0.0494 (9) | 0.0554 (12) | 0.0506 (11) | 0.0045 (9) | 0.0012 (8) | 0.0007 (9) |
C6 | 0.0517 (9) | 0.0427 (10) | 0.0368 (9) | −0.0001 (8) | −0.0009 (7) | 0.0050 (8) |
C7 | 0.0658 (11) | 0.0457 (10) | 0.0431 (10) | 0.0025 (9) | −0.0100 (8) | 0.0083 (8) |
C8 | 0.0486 (9) | 0.0484 (10) | 0.0459 (10) | 0.0070 (8) | 0.0010 (7) | 0.0033 (8) |
C9 | 0.0626 (12) | 0.0447 (10) | 0.0580 (12) | 0.0091 (9) | −0.0101 (9) | 0.0042 (9) |
C10 | 0.0896 (14) | 0.0486 (12) | 0.0459 (11) | −0.0099 (11) | −0.0092 (11) | 0.0095 (9) |
C11 | 0.0761 (12) | 0.0645 (13) | 0.0472 (11) | −0.0042 (12) | 0.0139 (10) | 0.0025 (9) |
C12 | 0.0519 (10) | 0.0506 (10) | 0.0478 (10) | 0.0005 (10) | 0.0077 (8) | −0.0032 (8) |
C13 | 0.0413 (7) | 0.0378 (9) | 0.0352 (8) | −0.0007 (7) | −0.0025 (6) | −0.0018 (7) |
C14 | 0.0419 (9) | 0.0528 (11) | 0.0577 (11) | 0.0103 (8) | 0.0060 (8) | 0.0116 (9) |
N1 | 0.0426 (7) | 0.0420 (8) | 0.0387 (7) | 0.0012 (6) | −0.0023 (6) | 0.0043 (6) |
S1 | 0.0398 (2) | 0.0481 (2) | 0.0578 (3) | 0.00017 (19) | −0.0094 (2) | 0.0060 (2) |
O1 | 0.0430 (7) | 0.0847 (11) | 0.0987 (11) | 0.0038 (8) | 0.0144 (7) | 0.0118 (9) |
O2 | 0.0796 (9) | 0.0658 (9) | 0.0665 (9) | −0.0051 (8) | −0.0352 (7) | 0.0106 (7) |
C15 | 0.0804 (12) | 0.0414 (10) | 0.0655 (13) | −0.0019 (10) | −0.0118 (11) | 0.0052 (10) |
C1—C2 | 1.369 (3) | C9—H9 | 0.930 |
C1—C6 | 1.384 (3) | C10—C11 | 1.374 (3) |
C1—H1 | 0.930 | C10—H10 | 0.930 |
C2—C3 | 1.376 (3) | C11—C12 | 1.380 (3) |
C2—H2 | 0.930 | C11—H11 | 0.930 |
C3—C4 | 1.364 (3) | C12—C13 | 1.382 (2) |
C3—H3 | 0.930 | C12—H12 | 0.930 |
C4—C5 | 1.380 (3) | C13—C14 | 1.509 (2) |
C4—H4 | 0.930 | C14—N1 | 1.465 (2) |
C5—C6 | 1.380 (2) | C14—H14A | 0.970 |
C5—H5 | 0.930 | C14—H14B | 0.970 |
C6—C7 | 1.503 (3) | N1—S1 | 1.6250 (14) |
C7—N1 | 1.479 (2) | S1—O2 | 1.4247 (13) |
C7—H7A | 0.970 | S1—O1 | 1.4269 (14) |
C7—H7B | 0.970 | S1—C15 | 1.764 (2) |
C8—C13 | 1.381 (2) | C15—H15A | 0.960 |
C8—C9 | 1.387 (3) | C15—H15B | 0.960 |
C8—H8 | 0.9300 | C15—H15C | 0.960 |
C9—C10 | 1.366 (3) | ||
C2—C1—C6 | 120.7 (2) | C11—C10—H10 | 120.0 |
C2—C1—H1 | 119.7 | C10—C11—C12 | 119.9 (2) |
C6—C1—H1 | 119.7 | C10—C11—H11 | 120.1 |
C1—C2—C3 | 120.5 (2) | C12—C11—H11 | 120.1 |
C1—C2—H2 | 119.8 | C11—C12—C13 | 120.61 (19) |
C3—C2—H2 | 119.8 | C11—C12—H12 | 119.7 |
C4—C3—C2 | 119.6 (2) | C13—C12—H12 | 119.7 |
C4—C3—H3 | 120.2 | C8—C13—C12 | 119.02 (15) |
C2—C3—H3 | 120.2 | C8—C13—C14 | 124.00 (15) |
C3—C4—C5 | 120.2 (2) | C12—C13—C14 | 116.98 (15) |
C3—C4—H4 | 119.9 | N1—C14—C13 | 116.36 (14) |
C5—C4—H4 | 119.9 | N1—C14—H14A | 108.2 |
C6—C5—C4 | 120.7 (2) | C13—C14—H14A | 108.2 |
C6—C5—H5 | 119.6 | N1—C14—H14B | 108.2 |
C4—C5—H5 | 119.6 | C13—C14—H14B | 108.2 |
C5—C6—C1 | 118.34 (17) | H14A—C14—H14B | 107.4 |
C5—C6—C7 | 121.06 (16) | C14—N1—C7 | 115.38 (14) |
C1—C6—C7 | 120.50 (16) | C14—N1—S1 | 116.99 (12) |
N1—C7—C6 | 112.15 (14) | C7—N1—S1 | 116.21 (11) |
N1—C7—H7A | 109.2 | O2—S1—O1 | 119.46 (10) |
C6—C7—H7A | 109.2 | O2—S1—N1 | 106.89 (8) |
N1—C7—H7B | 109.2 | O1—S1—N1 | 107.15 (8) |
C6—C7—H7B | 109.2 | O2—S1—C15 | 108.24 (10) |
H7A—C7—H7B | 107.9 | O1—S1—C15 | 107.36 (10) |
C13—C8—C9 | 120.04 (17) | N1—S1—C15 | 107.16 (9) |
C13—C8—H8 | 120.0 | S1—C15—H15A | 109.5 |
C9—C8—H8 | 120.0 | S1—C15—H15B | 109.5 |
C10—C9—C8 | 120.37 (19) | H15A—C15—H15B | 109.5 |
C10—C9—H9 | 119.8 | S1—C15—H15C | 109.5 |
C8—C9—H9 | 119.8 | H15A—C15—H15C | 109.5 |
C9—C10—C11 | 120.07 (18) | H15B—C15—H15C | 109.5 |
C9—C10—H10 | 120.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···O1i | 0.97 | 2.50 | 3.366 (2) | 149 |
C7—H7B···O1 | 0.97 | 2.44 | 2.911 (2) | 109 |
C8—H8···N1 | 0.93 | 2.61 | 2.937 (2) | 101 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C15H17NO2S |
Mr | 275.36 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 6.0948 (1), 13.4498 (4), 17.1293 (4) |
V (Å3) | 1404.15 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.32 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.931, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8426, 3421, 2694 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.095, 1.10 |
No. of reflections | 3421 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.29 |
Absolute structure | Flack (1983), 1428 Friedel pairs |
Absolute structure parameter | 0.01 (8) |
Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···O1i | 0.97 | 2.50 | 3.366 (2) | 149.1 |
C7—H7B···O1 | 0.97 | 2.44 | 2.911 (2) | 109.4 |
C8—H8···N1 | 0.93 | 2.61 | 2.937 (2) | 101.2 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
MD and AJB thank KAIST for financial support.
References
Banks & Hudson (1986). J. Chem. Soc. Perkin Trans 2, pp. 151–155. Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3084. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otterlo, W. A. L. van, Panayides, J.-L. & Fernandes, M. A. (2004). Acta Cryst. E60, o1586–o1588. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357–3363. Google Scholar
Youn, J.-H. & Herrmann, R. (1986). Tetrahedron Lett. 27, 1493–1494. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (I) was prepared by an established method (Stretter et al., 1969) from dibenzylamine and methanesulfonyl chloride. The last-named compound was prepared unintentionally from methyl sulfide, sulfuryl chloride and acetic acid (Youn and Herrmann, 1986), but with an excess of sulfuryl chloride (1:4:2). With the normal ratio of reactants (1:3:2), methanesulfinyl chloride is the main product. No observation of this kind was reported by the original authors, and indeed, oxidation of disulfides or sulfinyl moeities to sulfonyl moeities generally needs the use of peroxyacids or hydroperoxides.
The molecular structure of (I) (Fig. 1) exhibits no unusual bond lengths or bond angles. The crystal packing of (I) (Fig. 2) shows antiparallel arrays along the c axis, with the S-methyl group occupying the space between the two benzene rings of the next molecule. Along each of these arrays, the oxygen atoms point alternately up and down, and there appears to be some stacking of benzene rings between molecules, along the a and b axes. There is no evidence of hydrogen bonding, but there are weak C14—H14···O1, C7—H7···O2 and C8—H8···N1 interactions (Table 1).