organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­benzyl­methane­sulfonamide

aDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea, and bDepartment of Chemistry, Korea University, Seoul 136-701, Republic of Korea
*Correspondence e-mail: ajbuglass@kaist.ac.kr

(Received 7 May 2008; accepted 19 May 2008; online 7 June 2008)

Mol­ecules of the title compound, C15H17NO2S, which was synthesized from methane­sulfonyl chloride and dibenzyl­amine, are packed in anti­parallel arrays along the c axis, with the methyl group of one mol­ecule dovetailed between the two phenyl rings of the next mol­ecule. Along any such array, the sulfonyl O atoms protrude alternately up and down.

Related literature

For crystallographic literature on sulfonamides such as methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3084.]). For literature on N,N-dialkyl­methane­sulfonamides, see: van Otterlo et al. (2004[Otterlo, W. A. L. van, Panayides, J.-L. & Fernandes, M. A. (2004). Acta Cryst. E60, o1586-o1588.]). For the synthesis, see: Banks & Hudson (1986[Banks & Hudson (1986). J. Chem. Soc. Perkin Trans 2, pp. 151-155.]); Stretter et al. (1969[Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357-3363.]); Youn & Herrmann (1986[Youn, J.-H. & Herrmann, R. (1986). Tetrahedron Lett. 27, 1493-1494.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO2S

  • Mr = 275.36

  • Orthorhombic, P 21 21 21

  • a = 6.0948 (1) Å

  • b = 13.4498 (4) Å

  • c = 17.1293 (4) Å

  • V = 1404.15 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 (2) K

  • 0.32 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.982

  • 8426 measured reflections

  • 3421 independent reflections

  • 2694 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.10

  • 3421 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1428 Friedel pairs

  • Flack parameter: 0.01 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O1i 0.97 2.50 3.366 (2) 149
C7—H7B⋯O1 0.97 2.44 2.911 (2) 109
C8—H8⋯N1 0.93 2.61 2.937 (2) 101
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I) was prepared by an established method (Stretter et al., 1969) from dibenzylamine and methanesulfonyl chloride. The last-named compound was prepared unintentionally from methyl sulfide, sulfuryl chloride and acetic acid (Youn and Herrmann, 1986), but with an excess of sulfuryl chloride (1:4:2). With the normal ratio of reactants (1:3:2), methanesulfinyl chloride is the main product. No observation of this kind was reported by the original authors, and indeed, oxidation of disulfides or sulfinyl moeities to sulfonyl moeities generally needs the use of peroxyacids or hydroperoxides.

The molecular structure of (I) (Fig. 1) exhibits no unusual bond lengths or bond angles. The crystal packing of (I) (Fig. 2) shows antiparallel arrays along the c axis, with the S-methyl group occupying the space between the two benzene rings of the next molecule. Along each of these arrays, the oxygen atoms point alternately up and down, and there appears to be some stacking of benzene rings between molecules, along the a and b axes. There is no evidence of hydrogen bonding, but there are weak C14—H14···O1, C7—H7···O2 and C8—H8···N1 interactions (Table 1).

Related literature top

For crystallographic literature on sulfonamides such as methanesulfonamides, see: Gowda et al. (2007). For literature on N,N-dialkylmethanesulfonamides, see: van Otterlo et al. (2004). For the synthesis, see: Banks & Hudson (1986); Stretter et al. (1969); Youn & Herrmann (1986).

Experimental top

Methanesulfonyl chloride was prepared by the method of Youn and Herrmann, but using an excess of sulfuryl chloride (viz. methyl disulfide (0.01 mol), acetic acid (0.02 mol) and sulfuryl chloride (0.04 mol)). The title compound was prepared by the method of Stretter et al., using dibenzylamine (1.5 g, 8 mmol), methanesulfonyl chloride (458 mg, 4 mmol) and dichloromethane (30 ml). The crude product was purified by column chromatography on silica gel using dichloromethane as eluent, giving N,N-dibenzylmethanesulfonamide as white crystals (1.05 g, 96%), mp, 83–85°C. Literature mp. 84–85 oC (Banks & Hudson, 1986).

Crystals were obtained by evaporation of solvent from a solution of (I) in dichoromethane/hexane (1:4).

FTIR (KBr) (cm-1) 3088, 3062, 3009, 1496, 1446, 1438, 1382, 1318, 1265, 1207, 1132, 1091, 1056, 949

1H NMR (400 MHz, CDCl3, p.p.m. with respect to TMS) 7.39–7.29 (m, 10H), 4.35 (s, 4H), 2.77 (s, 3H)

13C NMR (100 MHz, CDCl3, p.p.m. with respect to TMS) 135.4, 128.7, 128.0, 49.8, 40.2

EIMS m/z (%) 275 (M+., 19), 196 (M+. - CH3SO2., 84), 195 (82), 184 (84), 91 (100)

Anal. Calcd. for C15H17NO2S (%): C, 65.45; H, 6.18; N, 5.09; S, 11.63. Found (%): C, 65.22; H, 6.15; N, 5.03; S, 11.80.

Refinement top

H atoms were located on a difference Fourier map, positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for CH3) times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis.
N,N-Dibenzylmethanesulfonamide top
Crystal data top
C15H17NO2SF(000) = 584
Mr = 275.36Dx = 1.303 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3097 reflections
a = 6.0948 (1) Åθ = 3.0–26.3°
b = 13.4498 (4) ŵ = 0.23 mm1
c = 17.1293 (4) ÅT = 293 K
V = 1404.15 (6) Å3Plate, white
Z = 40.32 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
3421 independent reflections
Radiation source: fine-focus sealed tube2694 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.931, Tmax = 0.982k = 1715
8426 measured reflectionsl = 1822
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3421 reflectionsΔρmax = 0.14 e Å3
173 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1428 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (8)
Crystal data top
C15H17NO2SV = 1404.15 (6) Å3
Mr = 275.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0948 (1) ŵ = 0.23 mm1
b = 13.4498 (4) ÅT = 293 K
c = 17.1293 (4) Å0.32 × 0.10 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
3421 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2694 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.982Rint = 0.025
8426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095Δρmax = 0.14 e Å3
S = 1.10Δρmin = 0.29 e Å3
3421 reflectionsAbsolute structure: Flack (1983), 1428 Friedel pairs
173 parametersAbsolute structure parameter: 0.01 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6426 (3)0.26792 (15)0.41616 (10)0.0536 (4)
H10.75400.22080.41920.064*
C20.6736 (4)0.36030 (17)0.44782 (11)0.0659 (6)
H20.80570.37540.47230.079*
C30.5109 (4)0.43099 (17)0.44367 (11)0.0697 (6)
H30.53220.49350.46560.084*
C40.3181 (4)0.40880 (15)0.40713 (12)0.0645 (6)
H40.20820.45660.40360.077*
C50.2856 (3)0.31565 (14)0.37533 (11)0.0518 (5)
H50.15350.30110.35070.062*
C60.4471 (3)0.24390 (13)0.37967 (9)0.0437 (4)
C70.4079 (3)0.14042 (14)0.34963 (10)0.0515 (5)
H7A0.54230.10220.35420.062*
H7B0.29710.10840.38160.062*
C80.3166 (3)0.30315 (13)0.15342 (10)0.0476 (4)
H80.20410.29630.18970.057*
C90.3116 (4)0.38057 (14)0.09996 (11)0.0551 (5)
H90.19670.42600.10100.066*
C100.4744 (4)0.39038 (15)0.04575 (11)0.0614 (5)
H100.46980.44220.00990.074*
C110.6452 (4)0.32373 (16)0.04415 (11)0.0626 (5)
H110.75540.33010.00690.075*
C120.6529 (3)0.24733 (14)0.09789 (10)0.0501 (4)
H120.76980.20290.09720.060*
C130.4884 (3)0.23622 (12)0.15276 (9)0.0381 (4)
C140.5104 (3)0.15067 (15)0.20925 (10)0.0508 (4)
H14A0.51840.08950.17930.061*
H14B0.64850.15790.23680.061*
N10.3353 (2)0.14007 (10)0.26726 (7)0.0411 (3)
S10.13533 (6)0.06492 (3)0.24587 (3)0.04857 (14)
O10.0312 (2)0.07909 (13)0.30334 (10)0.0755 (4)
O20.0845 (2)0.08028 (11)0.16558 (8)0.0706 (4)
C150.2358 (4)0.05725 (14)0.25679 (12)0.0625 (5)
H15A0.12330.10380.24260.094*
H15B0.27790.06790.31010.094*
H15C0.36100.06650.22350.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0547 (10)0.0613 (12)0.0448 (10)0.0043 (11)0.0069 (9)0.0037 (9)
C20.0788 (14)0.0725 (15)0.0466 (11)0.0145 (13)0.0131 (10)0.0001 (10)
C30.1070 (17)0.0532 (12)0.0490 (12)0.0108 (15)0.0061 (12)0.0087 (10)
C40.0838 (15)0.0532 (12)0.0565 (13)0.0162 (12)0.0131 (11)0.0011 (10)
C50.0494 (9)0.0554 (12)0.0506 (11)0.0045 (9)0.0012 (8)0.0007 (9)
C60.0517 (9)0.0427 (10)0.0368 (9)0.0001 (8)0.0009 (7)0.0050 (8)
C70.0658 (11)0.0457 (10)0.0431 (10)0.0025 (9)0.0100 (8)0.0083 (8)
C80.0486 (9)0.0484 (10)0.0459 (10)0.0070 (8)0.0010 (7)0.0033 (8)
C90.0626 (12)0.0447 (10)0.0580 (12)0.0091 (9)0.0101 (9)0.0042 (9)
C100.0896 (14)0.0486 (12)0.0459 (11)0.0099 (11)0.0092 (11)0.0095 (9)
C110.0761 (12)0.0645 (13)0.0472 (11)0.0042 (12)0.0139 (10)0.0025 (9)
C120.0519 (10)0.0506 (10)0.0478 (10)0.0005 (10)0.0077 (8)0.0032 (8)
C130.0413 (7)0.0378 (9)0.0352 (8)0.0007 (7)0.0025 (6)0.0018 (7)
C140.0419 (9)0.0528 (11)0.0577 (11)0.0103 (8)0.0060 (8)0.0116 (9)
N10.0426 (7)0.0420 (8)0.0387 (7)0.0012 (6)0.0023 (6)0.0043 (6)
S10.0398 (2)0.0481 (2)0.0578 (3)0.00017 (19)0.0094 (2)0.0060 (2)
O10.0430 (7)0.0847 (11)0.0987 (11)0.0038 (8)0.0144 (7)0.0118 (9)
O20.0796 (9)0.0658 (9)0.0665 (9)0.0051 (8)0.0352 (7)0.0106 (7)
C150.0804 (12)0.0414 (10)0.0655 (13)0.0019 (10)0.0118 (11)0.0052 (10)
Geometric parameters (Å, º) top
C1—C21.369 (3)C9—H90.930
C1—C61.384 (3)C10—C111.374 (3)
C1—H10.930C10—H100.930
C2—C31.376 (3)C11—C121.380 (3)
C2—H20.930C11—H110.930
C3—C41.364 (3)C12—C131.382 (2)
C3—H30.930C12—H120.930
C4—C51.380 (3)C13—C141.509 (2)
C4—H40.930C14—N11.465 (2)
C5—C61.380 (2)C14—H14A0.970
C5—H50.930C14—H14B0.970
C6—C71.503 (3)N1—S11.6250 (14)
C7—N11.479 (2)S1—O21.4247 (13)
C7—H7A0.970S1—O11.4269 (14)
C7—H7B0.970S1—C151.764 (2)
C8—C131.381 (2)C15—H15A0.960
C8—C91.387 (3)C15—H15B0.960
C8—H80.9300C15—H15C0.960
C9—C101.366 (3)
C2—C1—C6120.7 (2)C11—C10—H10120.0
C2—C1—H1119.7C10—C11—C12119.9 (2)
C6—C1—H1119.7C10—C11—H11120.1
C1—C2—C3120.5 (2)C12—C11—H11120.1
C1—C2—H2119.8C11—C12—C13120.61 (19)
C3—C2—H2119.8C11—C12—H12119.7
C4—C3—C2119.6 (2)C13—C12—H12119.7
C4—C3—H3120.2C8—C13—C12119.02 (15)
C2—C3—H3120.2C8—C13—C14124.00 (15)
C3—C4—C5120.2 (2)C12—C13—C14116.98 (15)
C3—C4—H4119.9N1—C14—C13116.36 (14)
C5—C4—H4119.9N1—C14—H14A108.2
C6—C5—C4120.7 (2)C13—C14—H14A108.2
C6—C5—H5119.6N1—C14—H14B108.2
C4—C5—H5119.6C13—C14—H14B108.2
C5—C6—C1118.34 (17)H14A—C14—H14B107.4
C5—C6—C7121.06 (16)C14—N1—C7115.38 (14)
C1—C6—C7120.50 (16)C14—N1—S1116.99 (12)
N1—C7—C6112.15 (14)C7—N1—S1116.21 (11)
N1—C7—H7A109.2O2—S1—O1119.46 (10)
C6—C7—H7A109.2O2—S1—N1106.89 (8)
N1—C7—H7B109.2O1—S1—N1107.15 (8)
C6—C7—H7B109.2O2—S1—C15108.24 (10)
H7A—C7—H7B107.9O1—S1—C15107.36 (10)
C13—C8—C9120.04 (17)N1—S1—C15107.16 (9)
C13—C8—H8120.0S1—C15—H15A109.5
C9—C8—H8120.0S1—C15—H15B109.5
C10—C9—C8120.37 (19)H15A—C15—H15B109.5
C10—C9—H9119.8S1—C15—H15C109.5
C8—C9—H9119.8H15A—C15—H15C109.5
C9—C10—C11120.07 (18)H15B—C15—H15C109.5
C9—C10—H10120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.503.366 (2)149
C7—H7B···O10.972.442.911 (2)109
C8—H8···N10.932.612.937 (2)101
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H17NO2S
Mr275.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.0948 (1), 13.4498 (4), 17.1293 (4)
V3)1404.15 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.32 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8426, 3421, 2694
Rint0.025
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.10
No. of reflections3421
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.29
Absolute structureFlack (1983), 1428 Friedel pairs
Absolute structure parameter0.01 (8)

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.503.366 (2)149.1
C7—H7B···O10.972.442.911 (2)109.4
C8—H8···N10.932.612.937 (2)101.2
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

MD and AJB thank KAIST for financial support.

References

First citationBanks & Hudson (1986). J. Chem. Soc. Perkin Trans 2, pp. 151–155.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3084.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtterlo, W. A. L. van, Panayides, J.-L. & Fernandes, M. A. (2004). Acta Cryst. E60, o1586–o1588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357–3363.  Google Scholar
First citationYoun, J.-H. & Herrmann, R. (1986). Tetrahedron Lett. 27, 1493–1494.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds