organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ammonium tri-tert-but­oxy­silane­thiol­ate

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz Street, 80952 PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl

(Received 13 June 2008; accepted 17 June 2008; online 21 June 2008)

The cations and anions of the title salt, NH4+·C12H27O3SSi, are linked by N—H⋯S and N—H⋯O hydrogen bonds into a linear chain that runs along the a axis of the monoclinic unit cell. The asymmetric unit contains two cations and two anions.

Related literature

For the synthesis of the thiol reagent, see: Piękoś & Wojnowski (1962[Piękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem. 318, 212-216.]). For an early study of its ammonium salt, see: Wojnowski (1971[Wojnowski, W. (1971). Zesz. Nauk. Politech. Gdańsk. Chem. 172, 1-42.]). For the structures of similar salts and comparison bond distances, see: Baranowska (2007[Baranowska, K. (2007). Acta Cryst. E63, o2653-o2655.]); Baranowska, Chojnacki, Becker & Wojnowski (2003[Baranowska, K., Chojnacki, J., Becker, B. & Wojnowski, W. (2003). Acta Cryst. E59, o765-o766.]); Baranowska, Chojnacki, Gosiewska & Wojnowski (2006[Baranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem. 632, 1086-1090.]); Baranowska, Chojnacki, Konitz et al. (2006[Baranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555-1560.]); Baranowska, Chojnacki, Wojnowski & Becker (2003[Baranowska, K., Chojnacki, J., Wojnowski, W. & Becker, B. (2003). Acta Cryst. E59, o2022-o2024.]); Becker et al. (2002[Becker, B., Pladzyk, A., Konitz, A. & Wojnowski, W. (2002). Appl. Organomet. Chem. 16, 517-524.], 2004[Becker, B., Baranowska, K., Chojnacki, J. & Wojnowski, W. (2004). Chem. Commun. pp. 620-621.]); Chojnacki (2008[Chojnacki, J. (2008). Polyhedron, 27, 969-976.]); Dołęga et al. (2008[Dołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun. 11, 847-850.]); Pladzyk & Baranowska (2007[Pladzyk, A. & Baranowska, K. (2007). Acta Cryst. E63, m1594.]). For the graph-set description of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • NH4+·C12H27O3SSi

  • Mr = 297.53

  • Monoclinic, P 21 /c

  • a = 11.9981 (4) Å

  • b = 12.5580 (5) Å

  • c = 24.8181 (12) Å

  • β = 100.336 (4)°

  • V = 3678.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 (2) K

  • 0.2 × 0.06 × 0.04 mm

Data collection
  • Oxford Diffraction KM-4 CCD diffractometer

  • Absorption correction: none

  • 12272 measured reflections

  • 6433 independent reflections

  • 4509 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.04

  • 6433 reflections

  • 367 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.903 (17) 2.331 (18) 3.223 (2) 170 (2)
N1—H1B⋯S2 0.891 (17) 2.334 (18) 3.215 (2) 169 (3)
N1—H1C⋯S1 0.899 (18) 2.326 (19) 3.219 (3) 172 (3)
N1—H1D⋯O2 0.893 (17) 2.49 (2) 3.059 (3) 122 (2)
N2—H2E⋯S2ii 0.902 (19) 2.38 (2) 3.255 (3) 162 (4)
N2—H2D⋯O3 0.877 (19) 2.01 (2) 2.886 (3) 175 (4)
N2—H2D⋯S1 0.877 (19) 2.95 (4) 3.337 (3) 109 (3)
N2—H2F⋯S2 0.897 (18) 2.435 (19) 3.323 (3) 171 (3)
N2—H2G⋯O5ii 0.867 (18) 2.39 (3) 2.952 (3) 123 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Complexes of trialkoxysilanethiols with ammonia were first obtained in 1971 by the reaction of (iPrO)3SiSH and (sBuO)3SiSH (Wojnowski, 1971) with ammonia but no structural data are available.

Amino tri-tert-butoxysilanethiolates show great structural diversity. Structures of isolated dimers, cubans, chains or sheets have been recognized so far. Cubic motifs were characterized for salts of primary amines (Becker, et al., 2004); for secondary amines dimers and/or chains have been found (Baranowska, Chojnacki, Konitz et al., 2006, Baranowska, Chojnacki, Becker & Wojnowski, 2003).

The asymmetric unit of (I) consists of two silanethiolate anions and two ammonium cations (Fig.1). The ions are connected via N(+)–H···S(-) hydrogen bonds, forming an eight-membered ring as R24(8) with four donors and two acceptors (Etter, 1990; Bernstein et al., 1995). Similar (thiol-amine)2 ring formation has been observed in other ammonium salts (Baranowska, Chojnacki, Konitz et al., 2006; Baranowska, Chojnacki, Wojnowski & Becker, 2003). These rings are futher linked by N–H···S and N–H···O hydrogen bonds into chains parallel to the (010) (Fig.2). The application of graph theory to the chain results in a variety of possible hydrogen bonding patterns: the N1–H1C···S1, N1–H1A···S1(i), N1–H1C···S1(i) and N1–H1A···S1 hydrogen bonds form an R24(8)ring, the N2–H2E···S2(ii), N2–H2F···S2(ii), N2–H2F···S2 and N2–H2E···S2 hydrogen bonds form an R24(8) ring, the N1–H1C···S1and N1–H1D···O2 hydrogen bonds form an R22(6) ring, the N2–H2G···O5(ii)and N2–H2E···S2(ii) hydrogen bonds form an R12(6) ring, the N1–H1B···S2, N2–H2F···S2, N1–H1C···S1 and N2–H2D···S1 hydrogen bonds form an R24(8) ring, in which atom N2 acts as a bifurcated donor.

The N···S distances in (I) lie in the range 2.886 (3)–3.340 (3) Å, comparable with values observed in other silanethiolates (Baranowska, Chojnacki, Gosiewska & Wojnowski 2006; Pladzyk & Baranowska, 2007; Dołęga et al., 2008) or aromatic thiolates (Baranowska, Chojnacki, Becker & Wojnowski, 2003; Baranowska, 2007). The length of silicon – sulfur bond is short (2.059 – 2.062 Å) and it is characteristic for ionic silanethiolates (Becker et al., 2002, Chojnacki, 2008). Hydrogen bonds are grouped in " hydrophilic" core, while the organic hydrocarbon groups form "hydrophobic" coat in the crystal. It is a very characteristic motif for many polimeric structures.

Related literature top

For the synthesis of the thiol reagent, see: Piękoś & Wojnowski (1962). For an early study of its ammonium salt, see: Wojnowski (1971). For the structures of similar salts and comparison bond distances, see: Baranowska (2007); Baranowska, Chojnacki, Becker & Wojnowski (2003); Baranowska, Chojnacki, Gosiewska & Wojnowski (2006); Baranowska, Chojnacki, Konitz et al. (2006); Baranowska, Chojnacki, Wojnowski & Becker (2003); Becker et al. (2002, 2004); Chojnacki (2008); Dołęga et al. (2008); Pladzyk & Baranowska (2007). For the graph-set description of hydrogen-bonding patterns, see: Bernstein et al. (1995); Etter (1990).

Experimental top

The substrate (tBuO)3SiSH was prepared according to the literature (Piękoś & Wojnowski, 1962).

To the mixture of to tri-tert-butoxysilanethiol (1.9 g; 0.0064 mol) and metallic magnesium (0.084 g; 0.0035 mol) in toluene one drop of concentrated ammonia solution was added. The mixture was stirred and heated at boiling point of toluene for one week. The solution was separated from the metal by filtration. The solvent was removed. The liquid residue was kept in refrigerator (4 °C) for a few days for crystallization. The final product has a form of colourless, crystalline needles.

Refinement top

All H atoms were refined as riding on C atoms with methyl C—H = 0.98 Å, and 1.5Ueq(C) for CH3 groups. Hydrogen atoms of ammonium were found in the electron density Fourier map and were refined with N—H bond lengths constrained to 0.89 (2) Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All tBu H atoms have been omitted for clarity. Hydrogen bonds are indicated with dashed lines.
[Figure 2] Fig. 2. The chains of molecules of (I) linked by hydrogen bonds. A view direction is parallel to the crystallographic b axis. All tBu H atoms have been omitted for clarity. Hydrogen bonds are indicated with dashed lines.
Ammonium tri-tert-butoxysilanethiolate top
Crystal data top
NH4+·C12H27O3SSiF(000) = 1312
Mr = 297.53Dx = 1.074 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7143 reflections
a = 11.9981 (4) Åθ = 2.0–32.4°
b = 12.5580 (5) ŵ = 0.24 mm1
c = 24.8181 (12) ÅT = 120 K
β = 100.336 (4)°Prism, colourless
V = 3678.7 (3) Å30.2 × 0.06 × 0.04 mm
Z = 8
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
4509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.1883 pixels mm-1θmax = 25.1°, θmin = 2.4°
0.75° width ω scansh = 148
12272 measured reflectionsk = 148
6433 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0746P)2]
where P = (Fo2 + 2Fc2)/3
6433 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.72 e Å3
8 restraintsΔρmin = 0.38 e Å3
Crystal data top
NH4+·C12H27O3SSiV = 3678.7 (3) Å3
Mr = 297.53Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.9981 (4) ŵ = 0.24 mm1
b = 12.5580 (5) ÅT = 120 K
c = 24.8181 (12) Å0.2 × 0.06 × 0.04 mm
β = 100.336 (4)°
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
4509 reflections with I > 2σ(I)
12272 measured reflectionsRint = 0.028
6433 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0488 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.72 e Å3
6433 reflectionsΔρmin = 0.38 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.42331 (5)0.53353 (5)0.58655 (3)0.02431 (17)
Si10.42375 (6)0.37946 (6)0.61491 (3)0.01975 (18)
O10.49073 (14)0.35757 (14)0.67658 (7)0.0264 (4)
O20.47413 (14)0.29078 (13)0.57685 (7)0.0236 (4)
O30.28781 (14)0.34803 (14)0.60815 (7)0.0234 (4)
C10.5191 (2)0.4195 (3)0.72592 (12)0.0377 (7)
C20.4156 (3)0.4800 (3)0.73596 (13)0.0554 (10)
H2A0.35330.430.73690.083*
H2B0.39320.53180.70640.083*
H2C0.43340.51760.77110.083*
C30.6160 (3)0.4934 (4)0.72026 (16)0.0703 (12)
H3A0.59110.54430.69060.105*
H3B0.67970.45160.71180.105*
H3C0.640.53210.75470.105*
C40.5552 (3)0.3381 (3)0.77117 (12)0.0550 (10)
H4A0.49240.28890.77270.082*
H4B0.57570.37490.80640.082*
H4C0.62070.2980.76350.082*
C50.5858 (2)0.2435 (2)0.58098 (11)0.0273 (6)
C60.5803 (2)0.1793 (2)0.52880 (12)0.0351 (7)
H6A0.56410.22690.49710.053*
H6B0.52020.12580.52650.053*
H6C0.65310.14370.52910.053*
C70.6098 (3)0.1701 (3)0.63015 (12)0.0424 (8)
H7A0.61080.21150.66370.064*
H7B0.68350.13570.63140.064*
H7C0.55050.11560.62720.064*
C80.6743 (2)0.3297 (2)0.58404 (15)0.0450 (9)
H8A0.65920.37290.55060.067*
H8B0.74950.29720.58760.067*
H8C0.67150.37510.61590.067*
C90.2329 (2)0.2472 (2)0.61567 (12)0.0317 (7)
C100.2878 (3)0.1914 (3)0.66557 (15)0.0667 (12)
H10A0.36770.17880.66380.1*
H10B0.24970.12320.66840.1*
H10C0.28250.23520.69770.1*
C110.2340 (3)0.1800 (3)0.56391 (15)0.0600 (10)
H11A0.20380.22230.53140.09*
H11B0.1870.11650.56490.09*
H11C0.31190.15850.56250.09*
C120.1101 (3)0.2741 (3)0.6167 (2)0.0734 (13)
H12A0.07630.30860.58220.11*
H12B0.10610.32240.64730.11*
H12C0.06840.20860.62130.11*
S20.10838 (5)0.46097 (5)0.41794 (3)0.02520 (18)
Si20.05808 (6)0.31006 (6)0.39125 (3)0.02122 (18)
O40.02593 (15)0.29638 (15)0.32505 (7)0.0286 (4)
O50.05329 (15)0.28237 (14)0.41883 (8)0.0311 (5)
O60.15294 (16)0.21879 (15)0.41046 (7)0.0348 (5)
C130.0289 (2)0.3627 (3)0.28096 (11)0.0349 (7)
C140.0582 (3)0.4383 (3)0.26532 (14)0.0525 (10)
H14A0.08940.48270.29690.079*
H14B0.02230.48380.23510.079*
H14C0.11940.39730.25380.079*
C150.1263 (3)0.4238 (3)0.29753 (13)0.0468 (9)
H15A0.09710.47150.32810.07*
H15B0.18030.37370.30880.07*
H15C0.16450.46590.26640.07*
C160.0726 (3)0.2868 (3)0.23444 (13)0.0578 (10)
H16A0.12980.23970.24530.087*
H16B0.00960.2440.2260.087*
H16C0.10650.32760.2020.087*
C170.1164 (3)0.1842 (2)0.42078 (12)0.0354 (7)
C180.1311 (3)0.1229 (3)0.36650 (16)0.0608 (10)
H18A0.16620.16940.33650.091*
H18B0.17960.06070.36840.091*
H18C0.05680.09930.35990.091*
C190.0602 (4)0.1198 (3)0.4673 (2)0.1000 (19)
H19A0.01850.10640.46360.15*
H19B0.10020.05180.46780.15*
H19C0.06160.15820.50160.15*
C200.2341 (3)0.2171 (3)0.4273 (2)0.0743 (13)
H20A0.26620.26470.39720.111*
H20B0.23050.25440.46230.111*
H20C0.28190.15380.42670.111*
C210.2338 (2)0.1648 (2)0.38299 (12)0.0357 (7)
C220.1726 (3)0.0832 (3)0.34325 (14)0.0484 (9)
H22A0.11920.11960.31460.073*
H22B0.13110.03380.3630.073*
H22C0.22790.04360.32650.073*
C230.3137 (3)0.1104 (3)0.42870 (14)0.0545 (10)
H23A0.34990.1640.45480.082*
H23B0.37190.07190.41340.082*
H23C0.27120.06020.44750.082*
C240.2952 (3)0.2437 (3)0.35263 (13)0.0482 (9)
H24A0.24110.27680.32310.072*
H24B0.35390.20650.3370.072*
H24C0.33050.29880.37810.072*
N10.36606 (19)0.40699 (19)0.47213 (10)0.0245 (5)
H1A0.419 (2)0.423 (2)0.4515 (10)0.038*
H1B0.2948 (16)0.414 (2)0.4546 (11)0.038*
H1C0.380 (3)0.449 (2)0.5020 (10)0.048*
H1D0.379 (2)0.3393 (15)0.4824 (11)0.026*
N20.1426 (2)0.5109 (2)0.55138 (11)0.0333 (6)
H2E0.071 (2)0.503 (4)0.5577 (19)0.113*
H2D0.185 (3)0.463 (3)0.5707 (16)0.09*
H2F0.137 (3)0.490 (3)0.5165 (8)0.047*
H2G0.166 (3)0.5762 (17)0.5557 (15)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0224 (3)0.0208 (3)0.0313 (4)0.0013 (3)0.0089 (3)0.0004 (3)
Si10.0197 (4)0.0211 (4)0.0188 (4)0.0014 (3)0.0044 (3)0.0005 (3)
O10.0250 (9)0.0321 (10)0.0209 (10)0.0016 (8)0.0012 (8)0.0008 (8)
O20.0231 (9)0.0238 (10)0.0237 (10)0.0039 (8)0.0038 (8)0.0002 (8)
O30.0214 (9)0.0242 (10)0.0249 (10)0.0036 (8)0.0047 (8)0.0026 (8)
C10.0325 (16)0.055 (2)0.0232 (15)0.0012 (15)0.0011 (13)0.0124 (15)
C20.066 (2)0.069 (3)0.0322 (18)0.020 (2)0.0104 (17)0.0167 (18)
C30.063 (2)0.088 (3)0.053 (2)0.036 (2)0.0059 (19)0.026 (2)
C40.047 (2)0.091 (3)0.0240 (17)0.013 (2)0.0014 (15)0.0020 (18)
C50.0262 (14)0.0211 (14)0.0352 (16)0.0072 (12)0.0071 (12)0.0045 (13)
C60.0375 (16)0.0343 (17)0.0347 (17)0.0114 (14)0.0097 (14)0.0008 (14)
C70.054 (2)0.0396 (19)0.0324 (17)0.0204 (16)0.0039 (15)0.0047 (15)
C80.0272 (16)0.0332 (18)0.076 (3)0.0023 (14)0.0138 (16)0.0061 (17)
C90.0296 (15)0.0264 (16)0.0399 (17)0.0114 (13)0.0086 (13)0.0069 (14)
C100.073 (3)0.063 (2)0.057 (2)0.033 (2)0.008 (2)0.030 (2)
C110.072 (3)0.049 (2)0.060 (2)0.028 (2)0.015 (2)0.0103 (19)
C120.0363 (19)0.051 (2)0.137 (4)0.0139 (18)0.027 (2)0.021 (3)
S20.0219 (3)0.0236 (4)0.0301 (4)0.0002 (3)0.0046 (3)0.0017 (3)
Si20.0227 (4)0.0215 (4)0.0199 (4)0.0040 (3)0.0049 (3)0.0008 (3)
O40.0289 (10)0.0335 (11)0.0208 (10)0.0077 (9)0.0026 (8)0.0002 (9)
O50.0376 (11)0.0216 (10)0.0378 (12)0.0063 (9)0.0168 (9)0.0036 (9)
O60.0428 (12)0.0355 (12)0.0250 (10)0.0195 (10)0.0032 (9)0.0034 (9)
C130.0307 (15)0.0506 (19)0.0217 (15)0.0130 (14)0.0006 (12)0.0056 (14)
C140.0428 (19)0.077 (3)0.0389 (19)0.0078 (18)0.0116 (16)0.0254 (19)
C150.0415 (18)0.064 (2)0.0351 (18)0.0239 (17)0.0062 (15)0.0184 (17)
C160.059 (2)0.083 (3)0.0257 (17)0.013 (2)0.0085 (16)0.0033 (18)
C170.0470 (18)0.0211 (15)0.0411 (18)0.0124 (13)0.0158 (15)0.0007 (13)
C180.060 (2)0.055 (2)0.069 (3)0.0186 (19)0.017 (2)0.021 (2)
C190.119 (4)0.060 (3)0.095 (4)0.049 (3)0.050 (3)0.049 (3)
C200.064 (2)0.051 (2)0.119 (4)0.020 (2)0.047 (3)0.004 (2)
C210.0326 (16)0.0345 (17)0.0359 (17)0.0169 (14)0.0052 (13)0.0168 (14)
C220.0457 (19)0.047 (2)0.049 (2)0.0105 (16)0.0014 (16)0.0230 (17)
C230.056 (2)0.042 (2)0.055 (2)0.0265 (17)0.0198 (17)0.0226 (17)
C240.0380 (18)0.062 (2)0.046 (2)0.0076 (17)0.0101 (15)0.0189 (18)
N10.0226 (12)0.0240 (12)0.0279 (13)0.0002 (11)0.0069 (10)0.0001 (11)
N20.0261 (13)0.0430 (16)0.0310 (14)0.0058 (12)0.0058 (11)0.0021 (13)
Geometric parameters (Å, º) top
S1—Si12.0586 (10)O4—C131.437 (3)
Si1—O11.6194 (18)O5—C171.452 (3)
Si1—O21.6439 (18)O6—C211.450 (3)
Si1—O31.6570 (17)C13—C141.514 (4)
O1—C11.439 (3)C13—C151.515 (4)
O2—C51.452 (3)C13—C161.516 (4)
O3—C91.454 (3)C14—H14A0.98
C1—C31.514 (5)C14—H14B0.98
C1—C21.514 (4)C14—H14C0.98
C1—C41.523 (5)C15—H15A0.98
C2—H2A0.98C15—H15B0.98
C2—H2B0.98C15—H15C0.98
C2—H2C0.98C16—H16A0.98
C3—H3A0.98C16—H16B0.98
C3—H3B0.98C16—H16C0.98
C3—H3C0.98C17—C191.471 (5)
C4—H4A0.98C17—C201.507 (4)
C4—H4B0.98C17—C181.534 (4)
C4—H4C0.98C18—H18A0.98
C5—C81.509 (4)C18—H18B0.98
C5—C71.515 (4)C18—H18C0.98
C5—C61.517 (4)C19—H19A0.98
C6—H6A0.98C19—H19B0.98
C6—H6B0.98C19—H19C0.98
C6—H6C0.98C20—H20A0.98
C7—H7A0.98C20—H20B0.98
C7—H7B0.98C20—H20C0.98
C7—H7C0.98C21—C231.511 (4)
C8—H8A0.98C21—C241.514 (5)
C8—H8B0.98C21—C221.517 (4)
C8—H8C0.98C22—H22A0.98
C9—C101.472 (4)C22—H22B0.98
C9—C121.517 (4)C22—H22C0.98
C9—C111.539 (4)C23—H23A0.98
C10—H10A0.98C23—H23B0.98
C10—H10B0.98C23—H23C0.98
C10—H10C0.98C24—H24A0.98
C11—H11A0.98C24—H24B0.98
C11—H11B0.98C24—H24C0.98
C11—H11C0.98N1—H1A0.903 (17)
C12—H12A0.98N1—H1B0.891 (17)
C12—H12B0.98N1—H1C0.899 (18)
C12—H12C0.98N1—H1D0.893 (17)
S2—Si22.0619 (10)N2—H2E0.902 (19)
Si2—O61.6253 (19)N2—H2D0.877 (19)
Si2—O41.6279 (19)N2—H2F0.897 (18)
Si2—O51.6440 (18)N2—H2G0.867 (18)
O1—Si1—O2104.88 (9)C13—O4—Si2134.46 (17)
O1—Si1—O3111.58 (9)C17—O5—Si2131.38 (17)
O2—Si1—O3103.72 (9)C21—O6—Si2133.17 (18)
O1—Si1—S1116.94 (8)O4—C13—C14108.4 (2)
O2—Si1—S1114.76 (7)O4—C13—C15110.9 (2)
O3—Si1—S1104.31 (7)C14—C13—C15110.7 (3)
C1—O1—Si1135.56 (18)O4—C13—C16105.3 (3)
C5—O2—Si1131.79 (16)C14—C13—C16111.0 (3)
C9—O3—Si1130.88 (16)C15—C13—C16110.3 (3)
O1—C1—C3108.7 (3)C13—C14—H14A109.5
O1—C1—C2109.6 (2)C13—C14—H14B109.5
C3—C1—C2112.0 (3)H14A—C14—H14B109.5
O1—C1—C4104.9 (3)C13—C14—H14C109.5
C3—C1—C4111.0 (3)H14A—C14—H14C109.5
C2—C1—C4110.4 (3)H14B—C14—H14C109.5
C1—C2—H2A109.5C13—C15—H15A109.5
C1—C2—H2B109.5C13—C15—H15B109.5
H2A—C2—H2B109.5H15A—C15—H15B109.5
C1—C2—H2C109.5C13—C15—H15C109.5
H2A—C2—H2C109.5H15A—C15—H15C109.5
H2B—C2—H2C109.5H15B—C15—H15C109.5
C1—C3—H3A109.5C13—C16—H16A109.5
C1—C3—H3B109.5C13—C16—H16B109.5
H3A—C3—H3B109.5H16A—C16—H16B109.5
C1—C3—H3C109.5C13—C16—H16C109.5
H3A—C3—H3C109.5H16A—C16—H16C109.5
H3B—C3—H3C109.5H16B—C16—H16C109.5
C1—C4—H4A109.5O5—C17—C19109.0 (3)
C1—C4—H4B109.5O5—C17—C20106.0 (2)
H4A—C4—H4B109.5C19—C17—C20111.8 (4)
C1—C4—H4C109.5O5—C17—C18112.1 (2)
H4A—C4—H4C109.5C19—C17—C18112.2 (3)
H4B—C4—H4C109.5C20—C17—C18105.7 (3)
O2—C5—C8110.0 (2)C17—C18—H18A109.5
O2—C5—C7110.2 (2)C17—C18—H18B109.5
C8—C5—C7111.5 (3)H18A—C18—H18B109.5
O2—C5—C6105.0 (2)C17—C18—H18C109.5
C8—C5—C6110.3 (2)H18A—C18—H18C109.5
C7—C5—C6109.7 (2)H18B—C18—H18C109.5
C5—C6—H6A109.5C17—C19—H19A109.5
C5—C6—H6B109.5C17—C19—H19B109.5
H6A—C6—H6B109.5H19A—C19—H19B109.5
C5—C6—H6C109.5C17—C19—H19C109.5
H6A—C6—H6C109.5H19A—C19—H19C109.5
H6B—C6—H6C109.5H19B—C19—H19C109.5
C5—C7—H7A109.5C17—C20—H20A109.5
C5—C7—H7B109.5C17—C20—H20B109.5
H7A—C7—H7B109.5H20A—C20—H20B109.5
C5—C7—H7C109.5C17—C20—H20C109.5
H7A—C7—H7C109.5H20A—C20—H20C109.5
H7B—C7—H7C109.5H20B—C20—H20C109.5
C5—C8—H8A109.5O6—C21—C23104.3 (2)
C5—C8—H8B109.5O6—C21—C24110.7 (2)
H8A—C8—H8B109.5C23—C21—C24111.6 (3)
C5—C8—H8C109.5O6—C21—C22109.6 (2)
H8A—C8—H8C109.5C23—C21—C22110.6 (3)
H8B—C8—H8C109.5C24—C21—C22109.9 (3)
O3—C9—C10112.2 (2)C21—C22—H22A109.5
O3—C9—C12105.8 (2)C21—C22—H22B109.5
C10—C9—C12112.4 (3)H22A—C22—H22B109.5
O3—C9—C11107.4 (2)C21—C22—H22C109.5
C10—C9—C11111.8 (3)H22A—C22—H22C109.5
C12—C9—C11106.9 (3)H22B—C22—H22C109.5
C9—C10—H10A109.5C21—C23—H23A109.5
C9—C10—H10B109.5C21—C23—H23B109.5
H10A—C10—H10B109.5H23A—C23—H23B109.5
C9—C10—H10C109.5C21—C23—H23C109.5
H10A—C10—H10C109.5H23A—C23—H23C109.5
H10B—C10—H10C109.5H23B—C23—H23C109.5
C9—C11—H11A109.5C21—C24—H24A109.5
C9—C11—H11B109.5C21—C24—H24B109.5
H11A—C11—H11B109.5H24A—C24—H24B109.5
C9—C11—H11C109.5C21—C24—H24C109.5
H11A—C11—H11C109.5H24A—C24—H24C109.5
H11B—C11—H11C109.5H24B—C24—H24C109.5
C9—C12—H12A109.5H1A—N1—H1B114 (3)
C9—C12—H12B109.5H1A—N1—H1C107 (3)
H12A—C12—H12B109.5H1B—N1—H1C112 (3)
C9—C12—H12C109.5H1A—N1—H1D106 (2)
H12A—C12—H12C109.5H1B—N1—H1D110 (3)
H12B—C12—H12C109.5H1C—N1—H1D109 (3)
O6—Si2—O4104.38 (10)H2E—N2—H2D108 (4)
O6—Si2—O5107.90 (11)H2E—N2—H2F103 (4)
O4—Si2—O5109.56 (10)H2D—N2—H2F105 (3)
O6—Si2—S2113.87 (8)H2E—N2—H2G113 (4)
O4—Si2—S2115.08 (8)H2D—N2—H2G116 (4)
O5—Si2—S2105.88 (7)H2F—N2—H2G111 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.90 (2)2.33 (2)3.223 (2)170 (2)
N1—H1B···S20.89 (2)2.33 (2)3.215 (2)169 (3)
N1—H1C···S10.90 (2)2.33 (2)3.219 (3)172 (3)
N1—H1D···O20.89 (2)2.49 (2)3.059 (3)122 (2)
N2—H2E···S2ii0.90 (2)2.38 (2)3.255 (3)162 (4)
N2—H2D···O30.88 (2)2.01 (2)2.886 (3)175 (4)
N2—H2D···S10.88 (2)2.95 (4)3.337 (3)109 (3)
N2—H2F···S20.90 (2)2.44 (2)3.323 (3)171 (3)
N2—H2G···O5ii0.87 (2)2.39 (3)2.952 (3)123 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaNH4+·C12H27O3SSi
Mr297.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.9981 (4), 12.5580 (5), 24.8181 (12)
β (°) 100.336 (4)
V3)3678.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.2 × 0.06 × 0.04
Data collection
DiffractometerOxford Diffraction KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12272, 6433, 4509
Rint0.028
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.04
No. of reflections6433
No. of parameters367
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.903 (17)2.331 (18)3.223 (2)170 (2)
N1—H1B···S20.891 (17)2.334 (18)3.215 (2)169 (3)
N1—H1C···S10.899 (18)2.326 (19)3.219 (3)172 (3)
N1—H1D···O20.893 (17)2.49 (2)3.059 (3)122 (2)
N2—H2E···S2ii0.902 (19)2.38 (2)3.255 (3)162 (4)
N2—H2D···O30.877 (19)2.01 (2)2.886 (3)175 (4)
N2—H2D···S10.877 (19)2.95 (4)3.337 (3)109 (3)
N2—H2F···S20.897 (18)2.435 (19)3.323 (3)171 (3)
N2—H2G···O5ii0.867 (18)2.39 (3)2.952 (3)123 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The work was undertaken with financial support from the Polish State Committee, grant No. 3 T09A 12028.

References

First citationBaranowska, K. (2007). Acta Cryst. E63, o2653–o2655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaranowska, K., Chojnacki, J., Becker, B. & Wojnowski, W. (2003). Acta Cryst. E59, o765–o766.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem. 632, 1086–1090.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555–1560.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaranowska, K., Chojnacki, J., Wojnowski, W. & Becker, B. (2003). Acta Cryst. E59, o2022–o2024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBecker, B., Baranowska, K., Chojnacki, J. & Wojnowski, W. (2004). Chem. Commun. pp. 620–621.  Web of Science CSD CrossRef Google Scholar
First citationBecker, B., Pladzyk, A., Konitz, A. & Wojnowski, W. (2002). Appl. Organomet. Chem. 16, 517–524.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChojnacki, J. (2008). Polyhedron, 27, 969–976.  Web of Science CrossRef CAS Google Scholar
First citationDołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun. 11, 847–850.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPiękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem. 318, 212–216.  CrossRef CAS Web of Science Google Scholar
First citationPladzyk, A. & Baranowska, K. (2007). Acta Cryst. E63, m1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojnowski, W. (1971). Zesz. Nauk. Politech. Gdańsk. Chem. 172, 1–42.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds