organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di-tert-butyl­phosphan­yl)bis­­(di­phenyl­phosphan­yl)phosphane

aDepartment of Inorganic Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz St. 80952-PL Gdańsk, Poland, and bInstitute for Inorganic Chemistry, University of Karlsruhe, 15 G. Engesserstrasse St., 76131 Karlsruhe, Germany
*Correspondence e-mail: kasiab29@wp.pl

(Received 20 June 2008; accepted 24 June 2008; online 28 June 2008)

The title phosphane, C32H38P4 or (Ph2P)2P(PtBu2), has a P atom that is linked to another three P atoms in a pyramidal configuration; the P—P distances in the range 2.2231 (7)–2.2446 (7) Å indicate that the P—P bonds are single bonds.

Related literature

For the synthesis of silylated triphosphanes, see: Kovacs et al. (1996[Kovacs, I., Matern, E. & Fritz, G. (1996). Z. Anorg. Allg. Chem. 622, 935-941.]). For other similar pyramidal isotetraphosphanes, see: Cowley et al. (1997[Cowley, A. H., Dennis, S. M., Kamepalli, S., Carrano, C. J. & Bond, M. R. (1997). J. Organomet. Chem. 529, 75-77.]); Fritz et al. (1987[Fritz, G., Stoll, K., Hoenle, W. & von Schnering, H. G. (1987). Z. Anorg. Allg. Chem. 544, 127-136.]); Jones et al. (2002[Jones, C., Junk, P. C. & Williams, T. C. (2002). J. Chem. Soc. Dalton Trans. pp. 2417-2418.]). For planar (tBu2P)3P, see: Fritz et al. (1999[Fritz, G., Matern, E., Krautscheid, H., Ahlrichs, R., Olkowska, J. W. & Pikies, J. (1999). Z. Anorg. Allg. Chem. 625, 1604-1607.]). For evaluation of NMR data, see: Bruker (1999[Bruker (1999). WINNMR and WINDAISY. Bruker Daltonik, Bremen, Germany.]); Hägele et al. (1987[Hägele, G., Engelhardt, M. & Boenigk, W. (1987). Simulation und automatisierte Analyse von NMR-Spektren. Weinheim:VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C32H38P4

  • Mr = 546.5

  • Triclinic, [P \overline 1]

  • a = 10.0161 (6) Å

  • b = 11.9258 (7) Å

  • c = 12.9951 (7) Å

  • α = 104.831 (5)°

  • β = 100.201 (5)°

  • γ = 90.900 (5)°

  • V = 1473.79 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 120 (2) K

  • 0.32 × 0.15 × 0.13 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: none

  • 10351 measured reflections

  • 5474 independent reflections

  • 4356 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.07

  • 5474 reflections

  • 331 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The reaction of Ph2PCl with tBu2P–P(SiMe3)Li 1.5 THF in toluene at -30 °C (Kovacs et al. 1996) yielded unexpectedly (Ph2P)2P(PtBu2) (1) in the place of expected Ph2P–P(SiMe3)–PtBu2.

The molecular structure of (1) is shown in Fig.1. The geometry around P3 atom in (1) is pyramidal, the sum of angles around P3 is 310.26 degrees. The geometry around P1 atom indicates more pyramidal character (the sum of angles is 297.49 degrees) than around P3. The geometry around P4 atom is more planar (the sum of angles is 320.58 degrees) than around P3. The P–P distances (2.2327 Å - mean value) clearly indicate a single bond character of these bonds. The tendency of phosphane to planarity is more visible for compounds with big groups attached to the central P atom. This assumption is strongly supported by the planar geometry around the central P atom in (tBu2P)3P. This planarity is accompanied by a significant shortening of the P–P distances (2.198 Å) (Fritz et al. 1987).

Related literature top

For the synthesis of silylated triphosphanes, see: Kovacs et al. (1996). For other similar pyramidal isotetraphosphanes, see: Cowley et al. (1997); Fritz et al. (1987); Jones et al. (2002). For planar (tBu2P)3P, see: Fritz et al. (1999). For evaluation of NMR data, see: Bruker (1999); Hägele et al. (1987).

Experimental top

A solution of tBu2P–P(SiMe3)Li 1.5 THF (855 mg 3.42 mmol) in 20 ml toluene at -30 °C was dropped to a solution of Ph2PCl (792 mg, 3.59 mmol) in 20 ml toluene. The resulting solution was stirred for 3 h at–30 °C and for 12 h at ambient temp. Then the solvent was removed under vacuum at 1 mTorr for 1 h, the residue dissolved in pentane (40 ml), filtered and concentrated to about 8 ml. After 6 days at -35 oC the solution yielded 688 mg of colourless crystals of (Ph2P)2P(PtBu2) (1).

31P{1H} NMR of (Ph2P1,2)2P3(P4tBu2) (1) (Bruker Av400, C6D6, 298 K, external standard 85% H3PO4)(δ p.p.m.) 37.9 dt, P4; -19.5 dd*, P1, P2; -62.3 dt*, P3. 1J(P3—P4) =–410.7 Hz, 1J(P1—P3) = -253.3 Hz, 2J(P1—P4) = +33.9 Hz (*= multiplet of higher order).

Chemical shifts and coupling constants of (1) were optimized using Bruke software (Bruker 1999, Hägele et al. 1987).

Refinement top

All H atoms were refined as riding on C atoms with aromatic C—H = 0.95 Å, methyl C—H = 0.98 Å, and Uiso(H) = 1.2Ueq(C) for CH groups, 1.5Ueq(C) for CH3 groups.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed approximately along the b axis.
(Di-tert--butylphosphanyl)bis(diphenylphosphanyl)phosphane top
Crystal data top
C32H38P4Z = 2
Mr = 546.5F(000) = 580
Triclinic, P1Dx = 1.232 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0161 (6) ÅCell parameters from 6775 reflections
b = 11.9258 (7) Åθ = 2.4–32.4°
c = 12.9951 (7) ŵ = 0.28 mm1
α = 104.831 (5)°T = 120 K
β = 100.201 (5)°Prism, colourless
γ = 90.900 (5)°0.32 × 0.15 × 0.13 mm
V = 1473.79 (15) Å3
Data collection top
Oxford DiffractionKM-4-CCD
diffractometer
4356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.1883 pixels mm-1θmax = 25.5°, θmin = 2.4°
0.75° wide ω scansh = 1112
10351 measured reflectionsk = 1413
5474 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
5474 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C32H38P4γ = 90.900 (5)°
Mr = 546.5V = 1473.79 (15) Å3
Triclinic, P1Z = 2
a = 10.0161 (6) ÅMo Kα radiation
b = 11.9258 (7) ŵ = 0.28 mm1
c = 12.9951 (7) ÅT = 120 K
α = 104.831 (5)°0.32 × 0.15 × 0.13 mm
β = 100.201 (5)°
Data collection top
Oxford DiffractionKM-4-CCD
diffractometer
4356 reflections with I > 2σ(I)
10351 measured reflectionsRint = 0.023
5474 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
5474 reflectionsΔρmin = 0.30 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05525 (19)0.27686 (16)0.36738 (15)0.0197 (4)
C20.10603 (19)0.16151 (17)0.33015 (16)0.0223 (4)
H20.07060.110.27410.027*
C30.2075 (2)0.12062 (18)0.37356 (17)0.0267 (5)
H30.24120.04160.3470.032*
C40.2601 (2)0.19420 (19)0.45549 (17)0.0299 (5)
H40.32920.16590.48570.036*
C50.2118 (2)0.3082 (2)0.49266 (18)0.0354 (5)
H50.24790.35920.54860.042*
C60.1106 (2)0.34949 (18)0.44923 (17)0.0288 (5)
H60.07830.42880.47570.035*
C70.03069 (19)0.37273 (17)0.19424 (16)0.0222 (4)
C80.0180 (2)0.48242 (19)0.17833 (18)0.0325 (5)
H80.04390.54020.22890.039*
C90.0951 (3)0.5082 (2)0.0890 (2)0.0446 (7)
H90.08710.58410.07920.054*
C100.1834 (3)0.4244 (2)0.0143 (2)0.0431 (6)
H100.23530.44230.04740.052*
C110.1966 (2)0.3146 (2)0.02890 (18)0.0368 (6)
H110.25750.25690.02270.044*
C120.1212 (2)0.28863 (19)0.11857 (17)0.0278 (5)
H120.13090.21310.12880.033*
C130.24915 (19)0.19694 (17)0.47598 (16)0.0214 (4)
C140.2700 (2)0.31269 (17)0.53800 (16)0.0258 (5)
H140.32220.36670.51630.031*
C150.2149 (2)0.34903 (18)0.63082 (18)0.0297 (5)
H150.22860.4280.67190.036*
C160.1403 (2)0.27079 (19)0.66379 (17)0.0313 (5)
H160.10350.29580.72780.038*
C170.1193 (2)0.15651 (19)0.60370 (18)0.0313 (5)
H170.06750.1030.62630.038*
C180.1735 (2)0.11927 (18)0.51040 (17)0.0260 (5)
H180.15880.04020.46970.031*
C190.3207 (2)0.00176 (16)0.32067 (15)0.0206 (4)
C200.2027 (2)0.07357 (17)0.27282 (16)0.0253 (4)
H200.11860.03990.25770.03*
C210.2071 (2)0.19302 (18)0.24733 (17)0.0291 (5)
H210.1260.24090.21530.035*
C220.3292 (2)0.24324 (19)0.26830 (17)0.0317 (5)
H220.33170.32550.2510.038*
C230.4468 (2)0.17404 (19)0.31416 (18)0.0334 (5)
H230.53080.20840.32790.04*
C240.4427 (2)0.05407 (18)0.34036 (16)0.0269 (5)
H240.52420.00680.37220.032*
C250.4464 (2)0.34098 (17)0.19073 (17)0.0241 (4)
C260.4359 (2)0.42053 (18)0.30219 (18)0.0300 (5)
H26A0.52070.4690.33280.045*
H26B0.42040.37290.35080.045*
H26C0.360.47030.29410.045*
C270.5567 (2)0.25572 (19)0.20422 (18)0.0280 (5)
H27A0.56940.21030.13270.042*
H27B0.5290.20320.24470.042*
H27C0.64230.2990.24390.042*
C280.4878 (2)0.41895 (19)0.1227 (2)0.0334 (5)
H28A0.42120.47770.11840.05*
H28B0.49080.37140.04960.05*
H28C0.57780.45750.15670.05*
C290.2723 (2)0.14372 (18)0.00756 (16)0.0277 (5)
C300.3239 (2)0.03535 (18)0.04003 (18)0.0333 (5)
H30A0.2670.0140.0870.05*
H30B0.41810.05150.07910.05*
H30C0.31960.02890.02510.05*
C310.3551 (2)0.1739 (2)0.07156 (18)0.0383 (6)
H31A0.34230.11030.1380.058*
H31B0.45160.18540.03790.058*
H31C0.32420.24550.08930.058*
C320.1237 (2)0.1177 (2)0.05120 (19)0.0367 (5)
H32A0.11740.05020.11390.055*
H32B0.0910.18520.07570.055*
H32C0.06780.10090.00150.055*
P10.07579 (5)0.34576 (4)0.31567 (4)0.01952 (13)
P20.33268 (5)0.15796 (4)0.35823 (4)0.02017 (14)
P30.17163 (5)0.19161 (4)0.22775 (4)0.01832 (13)
P40.26732 (5)0.27752 (4)0.12351 (4)0.02045 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0156 (9)0.0236 (10)0.0209 (10)0.0015 (8)0.0024 (8)0.0079 (8)
C20.0207 (10)0.0228 (10)0.0249 (10)0.0040 (8)0.0074 (8)0.0069 (8)
C30.0237 (11)0.0252 (11)0.0326 (12)0.0018 (9)0.0030 (9)0.0117 (9)
C40.0218 (11)0.0421 (13)0.0278 (11)0.0058 (10)0.0057 (9)0.0126 (10)
C50.0308 (12)0.0417 (13)0.0296 (12)0.0043 (10)0.0124 (10)0.0021 (10)
C60.0249 (11)0.0296 (12)0.0279 (11)0.0054 (9)0.0081 (9)0.0011 (9)
C70.0197 (10)0.0263 (11)0.0252 (11)0.0094 (8)0.0118 (8)0.0093 (8)
C80.0415 (13)0.0272 (12)0.0341 (12)0.0122 (10)0.0153 (10)0.0115 (10)
C90.0699 (19)0.0379 (14)0.0377 (14)0.0269 (13)0.0232 (14)0.0204 (11)
C100.0430 (14)0.0630 (17)0.0331 (13)0.0277 (13)0.0118 (11)0.0257 (13)
C110.0233 (11)0.0606 (16)0.0294 (12)0.0093 (11)0.0081 (10)0.0145 (11)
C120.0197 (10)0.0381 (12)0.0294 (11)0.0035 (9)0.0071 (9)0.0140 (9)
C130.0172 (9)0.0241 (10)0.0224 (10)0.0036 (8)0.0008 (8)0.0068 (8)
C140.0235 (10)0.0244 (11)0.0268 (11)0.0003 (9)0.0014 (9)0.0062 (9)
C150.0304 (11)0.0241 (11)0.0299 (11)0.0056 (9)0.0012 (9)0.0013 (9)
C160.0343 (12)0.0359 (13)0.0251 (11)0.0107 (10)0.0097 (10)0.0072 (9)
C170.0331 (12)0.0313 (12)0.0337 (12)0.0045 (10)0.0128 (10)0.0115 (10)
C180.0285 (11)0.0234 (10)0.0255 (11)0.0018 (9)0.0046 (9)0.0057 (8)
C190.0219 (10)0.0215 (10)0.0206 (10)0.0048 (8)0.0062 (8)0.0080 (8)
C200.0234 (10)0.0248 (11)0.0294 (11)0.0037 (8)0.0063 (9)0.0087 (9)
C210.0339 (12)0.0244 (11)0.0293 (11)0.0002 (9)0.0068 (10)0.0072 (9)
C220.0490 (14)0.0218 (11)0.0259 (11)0.0116 (10)0.0095 (10)0.0070 (9)
C230.0366 (13)0.0332 (12)0.0315 (12)0.0180 (10)0.0062 (10)0.0100 (10)
C240.0245 (11)0.0298 (11)0.0260 (11)0.0054 (9)0.0039 (9)0.0070 (9)
C250.0176 (10)0.0260 (11)0.0313 (11)0.0001 (8)0.0060 (8)0.0112 (9)
C260.0274 (11)0.0248 (11)0.0360 (12)0.0062 (9)0.0071 (10)0.0046 (9)
C270.0171 (10)0.0351 (12)0.0346 (12)0.0035 (9)0.0054 (9)0.0138 (9)
C280.0248 (11)0.0353 (13)0.0473 (14)0.0004 (9)0.0126 (10)0.0196 (11)
C290.0271 (11)0.0330 (12)0.0227 (11)0.0047 (9)0.0073 (9)0.0048 (9)
C300.0362 (13)0.0275 (11)0.0338 (12)0.0067 (10)0.0133 (10)0.0010 (9)
C310.0382 (13)0.0515 (15)0.0263 (12)0.0066 (11)0.0125 (10)0.0074 (10)
C320.0332 (12)0.0413 (14)0.0287 (12)0.0010 (11)0.0000 (10)0.0009 (10)
P10.0169 (3)0.0182 (3)0.0239 (3)0.00124 (19)0.0052 (2)0.0054 (2)
P20.0165 (3)0.0201 (3)0.0244 (3)0.0010 (2)0.0029 (2)0.0074 (2)
P30.0153 (2)0.0183 (3)0.0219 (3)0.00182 (19)0.0037 (2)0.0060 (2)
P40.0165 (3)0.0232 (3)0.0239 (3)0.0039 (2)0.0057 (2)0.0088 (2)
Geometric parameters (Å, º) top
C1—C21.391 (3)C20—C211.381 (3)
C1—C61.393 (3)C20—H200.95
C1—P11.847 (2)C21—C221.385 (3)
C2—C31.385 (3)C21—H210.95
C2—H20.95C22—C231.376 (3)
C3—C41.384 (3)C22—H220.95
C3—H30.95C23—C241.386 (3)
C4—C51.369 (3)C23—H230.95
C4—H40.95C24—H240.95
C5—C61.385 (3)C25—C271.530 (3)
C5—H50.95C25—C261.537 (3)
C6—H60.95C25—C281.535 (3)
C7—C81.383 (3)C25—P41.902 (2)
C7—C121.395 (3)C26—H26A0.98
C7—P11.845 (2)C26—H26B0.98
C8—C91.382 (3)C26—H26C0.98
C8—H80.95C27—H27A0.98
C9—C101.376 (4)C27—H27B0.98
C9—H90.95C27—H27C0.98
C10—C111.378 (4)C28—H28A0.98
C10—H100.95C28—H28B0.98
C11—C121.380 (3)C28—H28C0.98
C11—H110.95C29—C301.529 (3)
C12—H120.95C29—C311.535 (3)
C13—C181.394 (3)C29—C321.535 (3)
C13—C141.400 (3)C29—P41.902 (2)
C13—P21.833 (2)C30—H30A0.98
C14—C151.387 (3)C30—H30B0.98
C14—H140.95C30—H30C0.98
C15—C161.382 (3)C31—H31A0.98
C15—H150.95C31—H31B0.98
C16—C171.378 (3)C31—H31C0.98
C16—H160.95C32—H32A0.98
C17—C181.388 (3)C32—H32B0.98
C17—H170.95C32—H32C0.98
C18—H180.95P1—P32.2305 (7)
C19—C241.394 (3)P2—P32.2446 (7)
C19—C201.397 (3)P3—P42.2231 (7)
C19—P21.838 (2)
C2—C1—C6117.64 (18)C22—C23—C24119.9 (2)
C2—C1—P1126.30 (15)C22—C23—H23120
C6—C1—P1116.03 (15)C24—C23—H23120
C3—C2—C1120.96 (18)C23—C24—C19121.0 (2)
C3—C2—H2119.5C23—C24—H24119.5
C1—C2—H2119.5C19—C24—H24119.5
C2—C3—C4120.36 (19)C27—C25—C26109.64 (17)
C2—C3—H3119.8C27—C25—C28108.98 (17)
C4—C3—H3119.8C26—C25—C28107.24 (17)
C5—C4—C3119.4 (2)C27—C25—P4117.57 (14)
C5—C4—H4120.3C26—C25—P4106.54 (13)
C3—C4—H4120.3C28—C25—P4106.38 (14)
C4—C5—C6120.4 (2)C25—C26—H26A109.5
C4—C5—H5119.8C25—C26—H26B109.5
C6—C5—H5119.8H26A—C26—H26B109.5
C5—C6—C1121.2 (2)C25—C26—H26C109.5
C5—C6—H6119.4H26A—C26—H26C109.5
C1—C6—H6119.4H26B—C26—H26C109.5
C8—C7—C12119.11 (19)C25—C27—H27A109.5
C8—C7—P1117.40 (16)C25—C27—H27B109.5
C12—C7—P1123.49 (15)H27A—C27—H27B109.5
C9—C8—C7120.2 (2)C25—C27—H27C109.5
C9—C8—H8119.9H27A—C27—H27C109.5
C7—C8—H8119.9H27B—C27—H27C109.5
C10—C9—C8120.3 (2)C25—C28—H28A109.5
C10—C9—H9119.8C25—C28—H28B109.5
C8—C9—H9119.8H28A—C28—H28B109.5
C9—C10—C11120.1 (2)C25—C28—H28C109.5
C9—C10—H10120H28A—C28—H28C109.5
C11—C10—H10120H28B—C28—H28C109.5
C10—C11—C12120.0 (2)C30—C29—C31110.04 (18)
C10—C11—H11120C30—C29—C32108.77 (18)
C12—C11—H11120C31—C29—C32107.76 (18)
C11—C12—C7120.3 (2)C30—C29—P4115.98 (14)
C11—C12—H12119.8C31—C29—P4109.73 (15)
C7—C12—H12119.8C32—C29—P4104.12 (14)
C18—C13—C14118.53 (19)C29—C30—H30A109.5
C18—C13—P2124.94 (15)C29—C30—H30B109.5
C14—C13—P2116.45 (15)H30A—C30—H30B109.5
C15—C14—C13120.47 (19)C29—C30—H30C109.5
C15—C14—H14119.8H30A—C30—H30C109.5
C13—C14—H14119.8H30B—C30—H30C109.5
C16—C15—C14120.2 (2)C29—C31—H31A109.5
C16—C15—H15119.9C29—C31—H31B109.5
C14—C15—H15119.9H31A—C31—H31B109.5
C17—C16—C15120.0 (2)C29—C31—H31C109.5
C17—C16—H16120H31A—C31—H31C109.5
C15—C16—H16120H31B—C31—H31C109.5
C16—C17—C18120.3 (2)C29—C32—H32A109.5
C16—C17—H17119.8C29—C32—H32B109.5
C18—C17—H17119.8H32A—C32—H32B109.5
C17—C18—C13120.51 (19)C29—C32—H32C109.5
C17—C18—H18119.7H32A—C32—H32C109.5
C13—C18—H18119.7H32B—C32—H32C109.5
C24—C19—C20118.16 (18)C7—P1—C199.44 (9)
C24—C19—P2115.67 (15)C7—P1—P396.19 (6)
C20—C19—P2126.16 (15)C1—P1—P3101.86 (6)
C21—C20—C19120.70 (19)C13—P2—C19103.58 (9)
C21—C20—H20119.7C13—P2—P3101.37 (6)
C19—C20—H20119.7C19—P2—P3100.37 (6)
C20—C21—C22120.2 (2)P4—P3—P197.92 (3)
C20—C21—H21119.9P4—P3—P2109.51 (3)
C22—C21—H21119.9P1—P3—P2102.93 (3)
C23—C22—C21119.98 (19)C25—P4—C29110.55 (9)
C23—C22—H22120C25—P4—P3112.04 (7)
C21—C22—H22120C29—P4—P397.98 (7)

Experimental details

Crystal data
Chemical formulaC32H38P4
Mr546.5
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)10.0161 (6), 11.9258 (7), 12.9951 (7)
α, β, γ (°)104.831 (5), 100.201 (5), 90.900 (5)
V3)1473.79 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.32 × 0.15 × 0.13
Data collection
DiffractometerOxford DiffractionKM-4-CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10351, 5474, 4356
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.07
No. of reflections5474
No. of parameters331
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBruker (1999). WINNMR and WINDAISY. Bruker Daltonik, Bremen, Germany.  Google Scholar
First citationCowley, A. H., Dennis, S. M., Kamepalli, S., Carrano, C. J. & Bond, M. R. (1997). J. Organomet. Chem. 529, 75–77.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFritz, G., Matern, E., Krautscheid, H., Ahlrichs, R., Olkowska, J. W. & Pikies, J. (1999). Z. Anorg. Allg. Chem. 625, 1604–1607.  CrossRef CAS Google Scholar
First citationFritz, G., Stoll, K., Hoenle, W. & von Schnering, H. G. (1987). Z. Anorg. Allg. Chem. 544, 127–136.  CSD CrossRef CAS Web of Science Google Scholar
First citationHägele, G., Engelhardt, M. & Boenigk, W. (1987). Simulation und automatisierte Analyse von NMR-Spektren. Weinheim:VCH.  Google Scholar
First citationJones, C., Junk, P. C. & Williams, T. C. (2002). J. Chem. Soc. Dalton Trans. pp. 2417–2418.  Web of Science CSD CrossRef Google Scholar
First citationKovacs, I., Matern, E. & Fritz, G. (1996). Z. Anorg. Allg. Chem. 622, 935–941.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds