organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(3-Meth­oxy­phen­yl)ethanone 4-nitro­phenyl­hydrazone

aCollege of Biological and Environmental Engineering, Zhejiang University of Technology, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 13 June 2008; accepted 19 June 2008; online 25 June 2008)

Crystals of the title compound, C15H15N3O3, were obtained from a condensation reaction of 4-nitro­phenyl­hydrazine and 3-methoxy­acetophenone. In the crystal structure, the methoxy­phenyl ring is twisted slightly with respect to the nitro­phenyl­hydrazine plane, making a dihedral angle of 14.81 (8)°. The nitro and meth­oxy groups are each coplanar with the attached benzene rings. The nitro­phenyl and methoxy­phenyl groups are located on opposite sides of the C=N double bond, indicating an E configuration of the mol­ecule. Adjacent mol­ecules are linked together via N—H⋯O hydrogen bonding, forming chains along the [101] direction.

Related literature

For general background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Shan et al. (2003a[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003a). Acta Cryst. C59, o135-o136.]). For related structures, see: Shan et al. (2003b[Shan, S., Yu, H.-G., Hu, W.-X. & Xu, D.-J. (2003b). Acta Cryst. E59, o1886-o1887.], 2004[Shan, S., Wang, X.-J., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1345-o1347.], 2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1265.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O3

  • Mr = 285.30

  • Monoclinic, P 21 /c

  • a = 4.2977 (17) Å

  • b = 24.709 (9) Å

  • c = 13.132 (5) Å

  • β = 96.332 (11)°

  • V = 1386.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.32 × 0.26 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 16470 measured reflections

  • 3014 independent reflections

  • 1643 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.141

  • S = 1.03

  • 3014 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.45 3.279 (2) 161
Symmetry code: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since some phenylhydrazone derivatives have shown to be potential DNA damaging and mutagenic agents (Okabe et al., 1993), a series of new phenylhydrazone derivatives have been prepared in our laboratory (Shan et al., 2003a). As part of the ongoing investigation, the title compound has recently been prepared and its crystal structure is reported here.

The molecular structure of the title compound is shown in Fig. 1. The N1—C7 bond distance of 1.295 (2) Å indicates a typical C=N double bond. The molecule assumes an E configuration, with the nitrophenyl ring and methoxyphenyl rings located on the opposite sites of the C=N bond. The dihedral angle of 1.4 (3)° between nitro group and C10-benzene ring and the C1—C2—C3—C4 torsion angle of 0.9 (3)° suggest that nitro and methoxyl groups are co-planar with the individual benzene rings. The methoxyphenyl ring is slightly twisted with respect to the nitrophenylhydrazine mean plane by a small dihedral angle of 14.81 (8)°, indicating the molecule is approximately co-planar except for methyl H atoms.

In the crystal structure adjacent molecules are linked via N—H···O hydrogen bonding to form chains along the [1 0 1] direction (Table 1 and Fig. 2). Although π-π stacking was found between 4-nitrophenyl rings in several related structures previously reported, benzil 4-nitrophenylhydrazone (Shan et al., 2003b), 2-chloro-3,4-dimethoxybenzaldehyde 4-nitrophenylhydrazone (Shan et al., 2004) and acetylpyrazine 4-nitrophenylhydrazone (Shan et al., 2008), no π-π stacking is observed in the crystal structure.

Related literature top

For general background, see: Okabe et al. (1993); Shan et al. (2003a). For related structures, see: Shan et al. (2003b, 2004, 2008).

Experimental top

4-Nitrophenylhydrazine (0.31 g, 2 mmol) was dissolved in ethanol (10 ml), then H2SO4 solution (98%, 0.5 ml) was added slowly to the ethanol solution with stirring. The solution was heated at about 333 K for several minutes until the solution cleared. An ethanol solution (5 ml) of 3-methoxyacetophenone (0.30 g, 2 mmol) was dropped slowly into the above solution with continuous stirring, and the mixture solution was kept at about 333 K for 0.5 h. When the solution had cooled to room temperature, red microcrystals appeared. They were separated and washed with cold water three times to get the product 0.45 g. Single crystals of the title compound were obtained by recrystallization from an absolute ethanol solution.

Refinement top

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A diagram showing the N—H···O hydrogen bond chain (dashed lines) [symmetry code: (i) -1 + x, 3/2 - y, -1/2 + z].
(E)-1-(3-Methoxyphenyl)ethanone 4-nitrophenylhydrazone top
Crystal data top
C15H15N3O3F(000) = 600
Mr = 285.30Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4665 reflections
a = 4.2977 (17) Åθ = 2.0–25.0°
b = 24.709 (9) ŵ = 0.10 mm1
c = 13.132 (5) ÅT = 295 K
β = 96.332 (11)°Prism, red
V = 1386.0 (9) Å30.32 × 0.26 × 0.22 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1643 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 27.0°, θmin = 1.7°
Detector resolution: 10.00 pixels mm-1h = 55
ω scansk = 3031
16470 measured reflectionsl = 1615
3014 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.02P]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H15N3O3V = 1386.0 (9) Å3
Mr = 285.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.2977 (17) ŵ = 0.10 mm1
b = 24.709 (9) ÅT = 295 K
c = 13.132 (5) Å0.32 × 0.26 × 0.22 mm
β = 96.332 (11)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1643 reflections with I > 2σ(I)
16470 measured reflectionsRint = 0.045
3014 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3014 reflectionsΔρmin = 0.17 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2858 (3)0.59466 (6)0.29114 (11)0.0540 (4)
N20.4535 (3)0.63991 (6)0.27160 (11)0.0573 (4)
H20.44050.65330.21090.069*
N31.2264 (4)0.73954 (7)0.58666 (13)0.0656 (5)
O10.4958 (3)0.41329 (6)0.10899 (10)0.0775 (5)
O21.2533 (4)0.71902 (6)0.67268 (11)0.0944 (6)
O31.3617 (4)0.78225 (6)0.56823 (11)0.0865 (5)
C10.0634 (4)0.52365 (7)0.24122 (12)0.0507 (5)
C20.2090 (4)0.48991 (7)0.16601 (13)0.0563 (5)
H2A0.20110.49850.09740.068*
C30.3663 (4)0.44357 (8)0.19125 (13)0.0574 (5)
C40.3852 (5)0.43034 (8)0.29148 (15)0.0680 (6)
H40.49000.39930.30870.082*
C50.2442 (5)0.46436 (9)0.36672 (14)0.0775 (7)
H50.25760.45600.43510.093*
C60.0856 (5)0.51000 (8)0.34328 (14)0.0669 (6)
H60.00750.53190.39550.080*
C70.1106 (4)0.57271 (7)0.21575 (13)0.0528 (5)
C80.0787 (5)0.59459 (9)0.10844 (15)0.0818 (7)
H8A0.03960.63280.10990.123*
H8B0.09260.57690.06860.123*
H8C0.26860.58800.07820.123*
C90.6460 (5)0.36382 (8)0.13053 (16)0.0790 (7)
H9A0.50450.34190.17460.119*
H9B0.70580.34480.06770.119*
H9C0.82900.37150.16380.119*
C100.6430 (4)0.66358 (7)0.35048 (13)0.0488 (4)
C110.6824 (4)0.64122 (7)0.44883 (14)0.0574 (5)
H110.57940.60940.46250.069*
C120.8742 (4)0.66645 (8)0.52547 (14)0.0582 (5)
H120.89930.65180.59110.070*
C131.0288 (4)0.71338 (7)0.50517 (13)0.0520 (5)
C140.9974 (4)0.73569 (7)0.40765 (14)0.0566 (5)
H141.10540.76700.39420.068*
C150.8043 (4)0.71083 (7)0.33116 (14)0.0564 (5)
H150.78090.72570.26570.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0518 (9)0.0552 (9)0.0533 (9)0.0029 (7)0.0015 (7)0.0024 (7)
N20.0604 (10)0.0626 (10)0.0466 (9)0.0004 (8)0.0039 (7)0.0005 (7)
N30.0698 (11)0.0610 (11)0.0636 (11)0.0079 (9)0.0042 (8)0.0123 (9)
O10.1001 (11)0.0751 (9)0.0548 (8)0.0272 (8)0.0025 (7)0.0045 (7)
O20.1219 (14)0.1013 (12)0.0540 (9)0.0124 (10)0.0175 (9)0.0037 (8)
O30.1030 (12)0.0664 (10)0.0860 (11)0.0165 (9)0.0083 (9)0.0133 (8)
C10.0511 (11)0.0553 (11)0.0446 (10)0.0082 (9)0.0000 (8)0.0006 (8)
C20.0628 (12)0.0616 (12)0.0435 (10)0.0016 (9)0.0011 (9)0.0009 (8)
C30.0604 (12)0.0628 (12)0.0472 (11)0.0002 (10)0.0021 (9)0.0039 (9)
C40.0795 (15)0.0695 (13)0.0539 (12)0.0123 (11)0.0031 (10)0.0044 (10)
C50.1069 (18)0.0822 (16)0.0425 (11)0.0145 (13)0.0039 (11)0.0070 (10)
C60.0812 (15)0.0711 (13)0.0454 (11)0.0056 (11)0.0058 (10)0.0020 (9)
C70.0540 (11)0.0578 (11)0.0456 (11)0.0077 (9)0.0014 (9)0.0020 (8)
C80.0992 (17)0.0880 (16)0.0542 (12)0.0295 (13)0.0098 (11)0.0072 (10)
C90.0948 (16)0.0627 (13)0.0760 (15)0.0158 (12)0.0063 (12)0.0003 (11)
C100.0459 (10)0.0516 (11)0.0481 (10)0.0075 (8)0.0014 (8)0.0032 (8)
C110.0610 (12)0.0545 (11)0.0557 (12)0.0037 (9)0.0027 (9)0.0008 (9)
C120.0644 (12)0.0630 (12)0.0465 (11)0.0042 (10)0.0019 (9)0.0022 (9)
C130.0518 (11)0.0514 (11)0.0511 (11)0.0084 (9)0.0020 (8)0.0077 (8)
C140.0564 (12)0.0496 (11)0.0625 (12)0.0029 (9)0.0001 (9)0.0003 (9)
C150.0601 (12)0.0566 (11)0.0509 (11)0.0044 (9)0.0013 (9)0.0055 (9)
Geometric parameters (Å, º) top
N1—C71.295 (2)C6—H60.9300
N1—N21.3699 (19)C7—C81.501 (3)
N2—C101.376 (2)C8—H8A0.9600
N2—H20.8600C8—H8B0.9600
N3—O21.232 (2)C8—H8C0.9600
N3—O31.242 (2)C9—H9A0.9600
N3—C131.443 (2)C9—H9B0.9600
O1—C31.380 (2)C9—H9C0.9600
O1—C91.425 (2)C10—C151.395 (2)
C1—C21.388 (2)C10—C111.398 (3)
C1—C61.395 (2)C11—C121.378 (2)
C1—C71.482 (2)C11—H110.9300
C2—C31.388 (2)C12—C131.377 (3)
C2—H2A0.9300C12—H120.9300
C3—C41.367 (3)C13—C141.387 (2)
C4—C51.385 (3)C14—C151.375 (2)
C4—H40.9300C14—H140.9300
C5—C61.370 (3)C15—H150.9300
C5—H50.9300
C7—N1—N2118.18 (15)C7—C8—H8B109.5
N1—N2—C10119.09 (14)H8A—C8—H8B109.5
N1—N2—H2120.5C7—C8—H8C109.5
C10—N2—H2120.5H8A—C8—H8C109.5
O2—N3—O3121.99 (17)H8B—C8—H8C109.5
O2—N3—C13118.92 (18)O1—C9—H9A109.5
O3—N3—C13119.08 (17)O1—C9—H9B109.5
C3—O1—C9117.53 (15)H9A—C9—H9B109.5
C2—C1—C6117.71 (18)O1—C9—H9C109.5
C2—C1—C7122.00 (16)H9A—C9—H9C109.5
C6—C1—C7120.29 (16)H9B—C9—H9C109.5
C1—C2—C3121.26 (17)N2—C10—C15118.92 (16)
C1—C2—H2A119.4N2—C10—C11121.93 (16)
C3—C2—H2A119.4C15—C10—C11119.14 (16)
C4—C3—O1124.23 (18)C12—C11—C10119.85 (17)
C4—C3—C2120.60 (17)C12—C11—H11120.1
O1—C3—C2115.17 (16)C10—C11—H11120.1
C3—C4—C5118.30 (19)C13—C12—C11120.15 (17)
C3—C4—H4120.8C13—C12—H12119.9
C5—C4—H4120.8C11—C12—H12119.9
C6—C5—C4121.90 (18)C12—C13—C14120.89 (16)
C6—C5—H5119.0C12—C13—N3119.38 (17)
C4—C5—H5119.0C14—C13—N3119.73 (18)
C5—C6—C1120.22 (18)C15—C14—C13119.09 (18)
C5—C6—H6119.9C15—C14—H14120.5
C1—C6—H6119.9C13—C14—H14120.5
N1—C7—C1115.80 (16)C14—C15—C10120.86 (17)
N1—C7—C8123.50 (18)C14—C15—H15119.6
C1—C7—C8120.69 (16)C10—C15—H15119.6
C7—C8—H8A109.5
C7—N1—N2—C10179.48 (14)C6—C1—C7—C8166.53 (19)
C6—C1—C2—C31.2 (3)N1—N2—C10—C15177.60 (15)
C7—C1—C2—C3178.84 (16)N1—N2—C10—C113.4 (2)
C9—O1—C3—C43.0 (3)N2—C10—C11—C12179.86 (15)
C9—O1—C3—C2176.82 (17)C15—C10—C11—C121.2 (3)
C1—C2—C3—C40.9 (3)C10—C11—C12—C130.5 (3)
C1—C2—C3—O1178.98 (16)C11—C12—C13—C140.7 (3)
O1—C3—C4—C5179.96 (18)C11—C12—C13—N3179.40 (16)
C2—C3—C4—C50.1 (3)O2—N3—C13—C120.4 (3)
C3—C4—C5—C60.7 (3)O3—N3—C13—C12179.01 (17)
C4—C5—C6—C10.3 (3)O2—N3—C13—C14179.54 (17)
C2—C1—C6—C50.7 (3)O3—N3—C13—C141.1 (3)
C7—C1—C6—C5179.42 (18)C12—C13—C14—C151.2 (3)
N2—N1—C7—C1179.54 (13)N3—C13—C14—C15178.92 (16)
N2—N1—C7—C80.8 (3)C13—C14—C15—C100.5 (3)
C2—C1—C7—N1166.90 (16)N2—C10—C15—C14179.69 (15)
C6—C1—C7—N113.2 (2)C11—C10—C15—C140.7 (3)
C2—C1—C7—C813.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.453.279 (2)161
Symmetry code: (i) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H15N3O3
Mr285.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)4.2977 (17), 24.709 (9), 13.132 (5)
β (°) 96.332 (11)
V3)1386.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.26 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16470, 3014, 1643
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 1.03
No. of reflections3014
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.453.279 (2)161
Symmetry code: (i) x1, y+3/2, z1/2.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province, China (No. M203027).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1265.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Wang, X.-J., Hu, W.-X. & Xu, D.-J. (2004). Acta Cryst. E60, o1345–o1347.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003a). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShan, S., Yu, H.-G., Hu, W.-X. & Xu, D.-J. (2003b). Acta Cryst. E59, o1886–o1887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds