organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(E,Z)-1,3-Di­phenyl­prop-2-enyl­­idene]-N′-(1,3-di­thio­lan-2-yl­­idene)hydrazine

aTechnology Center, Jiuquan Iron and Steel (Group) Co. Ltd, Jiayuguan 735100, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: yhliuyzu@yahoo.com.cn

(Received 15 June 2008; accepted 19 June 2008; online 25 June 2008)

Mol­ecules of the title compound, C18H16N2S2, exist as the (2E, 1′Z)-isomer. The 1,3-dithiol­ane ring has an envelope conformation; the atoms of the C—C bond are disordered over two positions with occupancies of 0.47 (7) and 0.53 (7). The structure exhibits inter­molecular C—H⋯S and C—H⋯π(arene) hydrogen bonds.

Related literature

For related literature, see: Beghidja et al. (2006[Beghidja, C., Rogez, G., Kortus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140-3141.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Gou et al. (2004[Gou, S.-H., Chen, H.-C., Fang, Z.-P., Luo, J. & Wang, Y.-L. (2004). Chin. J. Org. Chem. 24, 234-238.]); Liu et al. (2001[Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4452.], 2003[Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729-2738.], 2007[Liu, X.-L., Liu, Y.-H., Dai, X.-Q., Zhao, Y. & Tong, B.-W. (2007). Acta Cryst. E63, o4019.], 2008[Liu, Y.-H., Liu, X.-L., Dai, X.-Q., Xu, W. & Guo, R. (2008). J. Chem. Crystallogr. 38, 109-113.]); Wang et al. (1994[Wang, Y., Li, Z. H. & Gao, N. (1994). Acta Pharm. Sin. 29, 78-80.]); Xu et al. (2005[Xu, L. Z., Xu, H. Z., Yang, S. H., Li, C. L. & Zhou, K. (2005). Acta Cryst. E61, o31-o32.]); Yang et al. (2007[Yang, L.-J., Li, Z.-G., Liu, X.-L. & Liu, Y.-H. (2007). Acta Cryst. E63, o4501.]); Yarishkin et al. (2008[Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137-140.]); Zhai et al. (1999[Zhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793-803.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2S2

  • Mr = 324.47

  • Orthorhombic, P n a 21

  • a = 30.9008 (9) Å

  • b = 5.7352 (2) Å

  • c = 9.1499 (3) Å

  • V = 1621.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker, (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.909, Tmax = 0.938

  • 7320 measured reflections

  • 3339 independent reflections

  • 2833 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.00

  • 3339 reflections

  • 206 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1186 Friedel pairs

  • Flack parameter: −0.03 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17′—H17BCgi 0.97 2.94 3.842 (9) 156
C18′—H18A⋯S1ii 0.97 2.69 3.439 (6) 135
C18′—H18B⋯S1i 0.97 2.86 3.628 (7) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg is the centroid of atoms C10–C15.

Data collection: SMART (Bruker, 2007[Bruker, (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker, (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The Schiff bases and carbonyl derivatives of 2-hydrazono-1, 3-dithiolane have been abstracted for their coordination chemistry and biological activity (Beghidja et al., 2006; Wang et al., 1994, Gou et al., 2004; Xu et al., 2005). Chalcone and its derivatives, as a natural products, have shown strong antibacterial, antifungal, antitumor and anti-inflammatory properties, especially antileishmanial, antimalarial and antimalarial (Zhai et al., 1999; Liu et al., 2001, 2003). Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). As ongoing research (Liu et al., 2008, Yang et al., 2007), we report herein the synthesis and structure ofthe title compound via the condensation reaction of the simple chalcone, (E)-1,3-diphenyl-propenone, and 2-hydrazono-1, 3-dithiolane.

The molecule of the title compound exists as the most stable configuration of (2E, 1'Z)-isomer (Fig.1). In the molecule the atoms of C16, N2, N1, C9, C8, C7 and two phenyl rings form a large conjugated system, but only the atoms of S1, S2, C16, N2, N1, C9 and C8 are coplanar, and C7, C6 and C10 are deviate by 0.22, 0.24, 0.11 (2) Å from the plane, respectively. The dihedral angles between the plane to phenyl ring (C10 ~ C15) plane and (C1~C6) plane are 63.45 (2)° and 43.30 (18)°, respectively. The two phenyl ring planes are almost vertical (the dihedral angle between them is 84.16°) (Fig. 1, Table 2).

In the ring of 1, 3-dithiolane of the molecule, the atoms of C17 and C18 are disordered over two positions with relative occupancies of 0.43 (7):0.57 (7) for the minor and major components. The rings at the two positions are also in the envelope (Cremer et al., 1975) form, and atoms C18 and C18' respectively deviate by - 0.367 (3) Å and 0.402 (2) Å from the plane defined by S1, C16 and S2, just like that in (3E)-3-(1, 3-dithiolan-2-ylidenehydrazono)buton (Liu et al., 2007).

In its packing structure, the molecules are linked into a three-dimensional framework by C–H···S and C–H···π(arene) intermolecular hydrogen bonds in the major components (Fig. 2 and 3, Table 2).

Related literature top

For related literature, see: Beghidja et al. (2006); Cremer & Pople (1975); Gou et al. (2004); Liu et al. (2001, 2003, 2007, 2008); Wang et al. (1994); Xu et al. (2005); Yang et al. (2007); Yarishkin et al. (2008); Zhai et al. (1999).

Experimental top

The title compound was prepared from (E)-1, 3-diphenyl-propenone and 2-hydrazono-1, 3-dithiolane in the equimolar ratio in 95% EtOH. The resulting yellow solid was recrystallized from CH2Cl2–EtOH to give crystals of suitable for single-crystal X-ray diffraction (yield 88%, m.p. 440–442 K). Analysis calculated for C18H16N2S2: C, 66.63; H, 4.97; N, 8.63%; found: C, 66.36; H, 4.81; N, 8.28.1H NMR (600 MHz, CDCl3, δ, p.p.m.): 7.879(d, J=16.47 Hz, 1H, CH=C), 6.891(d, J=16.54 Hz, 1H, CH=C), 7.324~7.677(m, 10H, 2C6H5), 3.521(m, 2H, CH2), 3.460(m, 2H, CH2).

Refinement top

The C17 and C18 atoms were refined as disordered with refined occupancy of 57.3 (7) % for the major component. The anisotropic displacement parameters of C17, C17', C18 and C18' were constrained to be equal. After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C — H distances of 0.93 (aromatic and ethylenic CH) or 0.97 Å (methene), and with Uiso(H) values of 1.2Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability ellipsoids. Open bonds show the minor disorder component.
[Figure 2] Fig. 2. Part of the crystal structure, showing C–H···S inter-molecular hydrogen bonds as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Part of the crystal structure, showing C–H···π as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
N-[(E,Z)-1,3-Diphenylprop-2-enylidene]- N'-(1,3-dithiolan-2-ylidene)-hydrazine top
Crystal data top
C18H16N2S2Dx = 1.329 Mg m3
Mr = 324.47Melting point: 442 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2883 reflections
a = 30.9008 (9) Åθ = 2.6–28.1°
b = 5.7352 (2) ŵ = 0.33 mm1
c = 9.1499 (3) ÅT = 296 K
V = 1621.57 (9) Å3Block, yellow
Z = 40.30 × 0.30 × 0.20 mm
F(000) = 680
Data collection top
Bruker SMART 1000 CCD
diffractometer
3339 independent reflections
Radiation source: fine-focus sealed tube2833 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 4139
Tmin = 0.909, Tmax = 0.938k = 47
7320 measured reflectionsl = 1211
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0727P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
3339 reflectionsΔρmax = 0.47 e Å3
206 parametersΔρmin = 0.34 e Å3
7 restraintsAbsolute structure: Flack (1983), 1186 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (9)
Crystal data top
C18H16N2S2V = 1621.57 (9) Å3
Mr = 324.47Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 30.9008 (9) ŵ = 0.33 mm1
b = 5.7352 (2) ÅT = 296 K
c = 9.1499 (3) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3339 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2833 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.938Rint = 0.055
7320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.47 e Å3
S = 1.00Δρmin = 0.34 e Å3
3339 reflectionsAbsolute structure: Flack (1983), 1186 Friedel pairs
206 parametersAbsolute structure parameter: 0.03 (9)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00882 (11)1.1023 (6)0.9703 (5)0.0507 (8)
H10.00161.03040.88630.061*
C20.01559 (12)1.2737 (7)1.0391 (5)0.0569 (10)
H20.04281.31121.00240.068*
C30.00045 (12)1.3879 (6)1.1592 (4)0.0526 (9)
H30.01681.50531.20250.063*
C40.03941 (11)1.3275 (7)1.2162 (5)0.0547 (9)
H40.05001.40391.29850.066*
C50.06363 (10)1.1535 (6)1.1509 (4)0.0423 (7)
H50.09031.11331.19080.051*
C60.04918 (9)1.0381 (5)1.0281 (3)0.0321 (6)
C70.07453 (9)0.8558 (5)0.9542 (3)0.0318 (6)
H70.06790.82630.85680.038*
C80.10609 (9)0.7288 (5)1.0139 (3)0.0302 (6)
H80.11260.75611.11170.036*
C90.13112 (8)0.5516 (5)0.9387 (3)0.0288 (6)
C100.13030 (9)0.5395 (5)0.7762 (3)0.0287 (6)
C110.11505 (11)0.3437 (6)0.7030 (4)0.0400 (7)
H110.10390.21890.75590.048*
C120.11627 (13)0.3328 (7)0.5522 (4)0.0485 (9)
H120.10590.20110.50440.058*
C130.13278 (10)0.5157 (6)0.4720 (4)0.0457 (8)
H130.13410.50620.37060.055*
C140.14728 (10)0.7122 (6)0.5424 (4)0.0424 (8)
H140.15810.83650.48830.051*
C150.14592 (9)0.7269 (6)0.6941 (3)0.0352 (7)
H150.15540.86150.74080.042*
C160.19817 (8)0.1107 (5)1.0334 (3)0.0267 (6)
C170.2416 (6)0.261 (2)1.1233 (8)0.061 (3)0.427 (7)
H17C0.23190.41931.10640.073*0.427 (7)
H17D0.27240.26611.14380.073*0.427 (7)
C180.2200 (3)0.1717 (16)1.2466 (9)0.0409 (13)0.427 (7)
H18C0.24100.15581.32480.049*0.427 (7)
H18D0.19890.28641.27780.049*0.427 (7)
C17'0.2517 (3)0.1970 (15)1.1350 (5)0.061 (3)0.573 (7)
H17A0.24320.35911.14490.073*0.573 (7)
H17B0.28300.19271.13400.073*0.573 (7)
C18'0.2375 (2)0.0777 (12)1.2611 (6)0.0409 (13)0.573 (7)
H18A0.26120.01511.29930.049*0.573 (7)
H18B0.22950.19061.33530.049*0.573 (7)
N10.15384 (7)0.4150 (4)1.0215 (3)0.0303 (5)
N20.17893 (8)0.2525 (4)0.9464 (3)0.0326 (5)
S10.23331 (2)0.09801 (13)0.96398 (8)0.0371 (2)
S20.19208 (2)0.10941 (13)1.22517 (8)0.03412 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (17)0.054 (2)0.0529 (19)0.0162 (16)0.0127 (17)0.0014 (18)
C20.0450 (18)0.064 (3)0.062 (2)0.025 (2)0.0003 (18)0.011 (2)
C30.0468 (19)0.048 (2)0.063 (2)0.0138 (16)0.0177 (17)0.0037 (17)
C40.0448 (17)0.057 (2)0.062 (2)0.0032 (17)0.0105 (19)0.014 (2)
C50.0282 (14)0.0498 (19)0.0489 (19)0.0002 (14)0.0035 (13)0.0052 (15)
C60.0304 (13)0.0307 (15)0.0353 (14)0.0037 (12)0.0044 (11)0.0105 (12)
C70.0307 (13)0.0326 (14)0.0321 (13)0.0017 (12)0.0014 (12)0.0042 (13)
C80.0300 (12)0.0319 (15)0.0287 (13)0.0000 (12)0.0000 (10)0.0062 (11)
C90.0245 (12)0.0292 (14)0.0326 (14)0.0031 (11)0.0000 (10)0.0083 (11)
C100.0256 (12)0.0277 (14)0.0328 (13)0.0085 (11)0.0001 (11)0.0060 (11)
C110.0465 (16)0.0330 (16)0.0405 (18)0.0057 (14)0.0028 (14)0.0068 (14)
C120.061 (2)0.0419 (19)0.0426 (18)0.0144 (18)0.0111 (16)0.0071 (15)
C130.0507 (18)0.056 (2)0.0300 (14)0.0256 (17)0.0009 (16)0.0032 (16)
C140.0417 (16)0.050 (2)0.0358 (16)0.0093 (16)0.0069 (14)0.0178 (15)
C150.0303 (13)0.0381 (17)0.0373 (16)0.0033 (13)0.0026 (11)0.0097 (13)
C160.0260 (12)0.0276 (15)0.0266 (12)0.0049 (11)0.0006 (10)0.0055 (11)
C170.087 (6)0.050 (6)0.046 (2)0.039 (5)0.018 (3)0.001 (3)
C180.038 (3)0.039 (4)0.046 (3)0.009 (2)0.016 (2)0.008 (3)
C17'0.087 (6)0.050 (6)0.046 (2)0.039 (5)0.018 (3)0.001 (3)
C18'0.038 (3)0.039 (4)0.046 (3)0.009 (2)0.016 (2)0.008 (3)
N10.0260 (11)0.0347 (13)0.0302 (11)0.0046 (10)0.0023 (9)0.0081 (10)
N20.0315 (11)0.0357 (13)0.0306 (12)0.0058 (10)0.0038 (9)0.0078 (10)
S10.0372 (4)0.0369 (4)0.0373 (4)0.0088 (3)0.0046 (3)0.0062 (4)
S20.0336 (3)0.0405 (4)0.0283 (3)0.0076 (3)0.0037 (3)0.0034 (3)
Geometric parameters (Å, º) top
C1—C21.389 (5)C13—C141.373 (5)
C1—C61.404 (4)C13—H130.9300
C1—H10.9300C14—C151.391 (4)
C2—C31.362 (6)C14—H140.9300
C2—H20.9300C15—H150.9300
C3—C41.381 (5)C16—N21.284 (3)
C3—H30.9300C16—S11.736 (3)
C4—C51.383 (5)C16—S21.765 (3)
C4—H40.9300C17—C181.406 (5)
C5—C61.378 (4)C17—S11.750 (5)
C5—H50.9300C17—H17C0.9700
C6—C71.471 (4)C17—H17D0.9700
C7—C81.334 (4)C18—S21.839 (8)
C7—H70.9300C18—H18C0.9700
C8—C91.451 (4)C18—H18D0.9700
C8—H80.9300C17'—C18'1.410 (5)
C9—N11.296 (3)C17'—S11.759 (4)
C9—C101.489 (4)C17'—H17A0.9700
C10—C111.390 (5)C17'—H17B0.9700
C10—C151.397 (4)C18'—S21.798 (5)
C11—C121.382 (5)C18'—H18A0.9700
C11—H110.9300C18'—H18B0.9700
C12—C131.378 (5)N1—N21.394 (3)
C12—H120.9300
C2—C1—C6119.8 (4)C13—C14—C15120.5 (3)
C2—C1—H1120.1C13—C14—H14119.7
C6—C1—H1120.1C15—C14—H14119.7
C3—C2—C1121.3 (3)C14—C15—C10120.0 (3)
C3—C2—H2119.4C14—C15—H15120.0
C1—C2—H2119.4C10—C15—H15120.0
C2—C3—C4119.3 (3)N2—C16—S1120.0 (2)
C2—C3—H3120.3N2—C16—S2124.7 (2)
C4—C3—H3120.3S1—C16—S2115.30 (15)
C3—C4—C5120.0 (4)C18—C17—S1113.9 (6)
C3—C4—H4120.0C18—C17—H17C108.8
C5—C4—H4120.0S1—C17—H17C108.8
C6—C5—C4121.5 (3)C18—C17—H17D108.8
C6—C5—H5119.2S1—C17—H17D108.8
C4—C5—H5119.2H17C—C17—H17D107.7
C5—C6—C1118.0 (3)C17—C18—S2117.1 (6)
C5—C6—C7122.9 (3)C17—C18—H18C108.0
C1—C6—C7119.1 (3)S2—C18—H18C108.0
C8—C7—C6126.1 (3)C17—C18—H18D108.0
C8—C7—H7117.0S2—C18—H18D108.0
C6—C7—H7117.0H18C—C18—H18D107.3
C7—C8—C9125.3 (3)C18'—C17'—S1118.1 (5)
C7—C8—H8117.3C18'—C17'—H17A107.8
C9—C8—H8117.3S1—C17'—H17A107.8
N1—C9—C8115.8 (2)C18'—C17'—H17B107.8
N1—C9—C10124.4 (3)S1—C17'—H17B107.8
C8—C9—C10119.8 (2)H17A—C17'—H17B107.1
C11—C10—C15118.6 (3)C17'—C18'—S2112.4 (5)
C11—C10—C9121.7 (3)C17'—C18'—H18A109.1
C15—C10—C9119.7 (3)S2—C18'—H18A109.1
C12—C11—C10120.6 (4)C17'—C18'—H18B109.1
C12—C11—H11119.7S2—C18'—H18B109.1
C10—C11—H11119.7H18A—C18'—H18B107.8
C13—C12—C11120.5 (4)C9—N1—N2114.7 (2)
C13—C12—H12119.8C16—N2—N1112.1 (2)
C11—C12—H12119.8C16—S1—C1798.9 (3)
C14—C13—C12119.7 (3)C16—S1—C17'95.7 (3)
C14—C13—H13120.1C16—S2—C18'95.8 (2)
C12—C13—H13120.1C16—S2—C1893.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cgi0.972.943.842 (9)156
C18—H18A···S1ii0.972.693.439 (6)135
C18—H18B···S1i0.972.863.628 (7)137
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16N2S2
Mr324.47
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)30.9008 (9), 5.7352 (2), 9.1499 (3)
V3)1621.57 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.909, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
7320, 3339, 2833
Rint0.055
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.00
No. of reflections3339
No. of parameters206
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.34
Absolute structureFlack (1983), 1186 Friedel pairs
Absolute structure parameter0.03 (9)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C6—C71.471 (4)C17—C181.406 (5)
C7—C81.334 (4)C17—S11.750 (5)
C8—C91.451 (4)C18—S21.839 (8)
C9—N11.296 (3)C17'—C18'1.410 (5)
C9—C101.489 (4)C17'—S11.759 (4)
C16—N21.284 (3)C18'—S21.798 (5)
C16—S11.736 (3)N1—N21.394 (3)
C16—S21.765 (3)
C8—C7—C6126.1 (3)S1—C16—S2115.30 (15)
C7—C8—C9125.3 (3)C18—C17—S1113.9 (6)
N1—C9—C8115.8 (2)C17—C18—S2117.1 (6)
N1—C9—C10124.4 (3)C18'—C17'—S1118.1 (5)
C8—C9—C10119.8 (2)C17'—C18'—S2112.4 (5)
N2—C16—S1120.0 (2)C9—N1—N2114.7 (2)
N2—C16—S2124.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17'—H17B···Cgi0.972.943.842 (9)156
C18'—H18A···S1ii0.972.693.439 (6)135
C18'—H18B···S1i0.972.863.628 (7)137
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Yangzhou University (No. 2006XJJ03) for financial support of this work.

References

First citationBeghidja, C., Rogez, G., Kortus, J., Wesolek, M. & Welter, R. (2006). J. Am. Chem. Soc. 128, 3140–3141.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker, (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGou, S.-H., Chen, H.-C., Fang, Z.-P., Luo, J. & Wang, Y.-L. (2004). Chin. J. Org. Chem. 24, 234–238.  CAS Google Scholar
First citationLiu, Y.-H., Liu, X.-L., Dai, X.-Q., Xu, W. & Guo, R. (2008). J. Chem. Crystallogr. 38, 109–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-L., Liu, Y.-H., Dai, X.-Q., Zhao, Y. & Tong, B.-W. (2007). Acta Cryst. E63, o4019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443–4452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Li, Z. H. & Gao, N. (1994). Acta Pharm. Sin. 29, 78–80.  Google Scholar
First citationXu, L. Z., Xu, H. Z., Yang, S. H., Li, C. L. & Zhou, K. (2005). Acta Cryst. E61, o31–o32.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, L.-J., Li, Z.-G., Liu, X.-L. & Liu, Y.-H. (2007). Acta Cryst. E63, o4501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793–803.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds