organic compounds
N-(4-Chlorophenyl)-2-deoxy-α-L-ribopyranosylamine
aKey Laboratory for Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, and bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
*Correspondence e-mail: shangpeihua05@mail.tsinghua.org.cn
In the 11H14ClNO3, intermolecular hydrogen bonds link molecules in the ab plane, forming layers that stack along the c axis.
of the title compound, CRelated literature
For related literature, see: Durette et al. (1978); Ganem (1966); Katzen (1979); Bridiau et al. (2007); Ojala et al. (2000).
Experimental
Crystal data
|
Data collection
|
Data collection: XSCANS (Bruker, 1997); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808011616/pk2090sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808011616/pk2090Isup2.hkl
The title compound was synthesized by the reaction of 4-chlorobenzenamine with 2-deoxy-L-ribose in a mixture of methanol and water. 4-chlorobenzenamine (0.93 g, 10 mmol) in a little methanol was added to a solution of 2-deoxy-L-ribose (1.34 g, 10 mmol) in 20 ml water, the solution was stirred at room temperature overnight. A white solid obtained by filtration was washed with ice water, then cold ether, and was dried under pressure. The solid was N-p-chlorophenyl-2-deoxy-α-L-ribopyranosylamine (yield: 70%). 1H NMR (300 MHz, DMSO-d6): δ 1.68 (m, 1H), 1.78 (m, 1H), 3.37 (d, 1H), 3.49 (s, 1H), 3.62 (q, 1H), 3.68 (m, 1H), 4.36 (d, 1H), 4.56 (m, 1H), 4.69 (d, 1H), 6.16 (d, 1H), 6.53 (d, 2H), 6.886 (d, 2H). 13C NMR (300 MHz, DMSO-d6): δ 144.2, 129.2, 125.3, 113.4, 80.3, 68.0, 66.8, 65.7, 34.7, 20.1.
H atoms were placed in calculated positions with constrained distances of 0.98 Å (R3CH), 0.97 Å (R2CH2), 0.93 Å (R2CH), 0.82 Å (OH) and 0.9195 Å (NH). Uiso(H) values were set to 1.2Ueq of the attached atom.
Data collection: XSCANS (Bruker, 1997); cell
XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the title compound, with displacement ellipsoids drawn at the 35% probability level. |
C11H14ClNO3 | F(000) = 512 |
Mr = 243.68 | Dx = 1.380 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 37 reflections |
a = 6.5305 (8) Å | θ = 4.9–12.5° |
b = 7.9857 (9) Å | µ = 0.32 mm−1 |
c = 22.496 (3) Å | T = 295 K |
V = 1173.2 (3) Å3 | Prism, colorless |
Z = 4 | 0.4 × 0.2 × 0.1 mm |
Bruker P4 diffractometer | Rint = 0.026 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 2.7° |
Graphite monochromator | h = −7→7 |
ω scans | k = −9→9 |
2581 measured reflections | l = −27→27 |
2172 independent reflections | 3 standard reflections every 97 reflections |
1690 reflections with I > 2σ(I) | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.084 | w = 1/[σ2(Fo2) + (0.005P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2172 reflections | Δρmax = 0.15 e Å−3 |
147 parameters | Δρmin = −0.17 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 880 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.09 (11) |
C11H14ClNO3 | V = 1173.2 (3) Å3 |
Mr = 243.68 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.5305 (8) Å | µ = 0.32 mm−1 |
b = 7.9857 (9) Å | T = 295 K |
c = 22.496 (3) Å | 0.4 × 0.2 × 0.1 mm |
Bruker P4 diffractometer | Rint = 0.026 |
2581 measured reflections | 3 standard reflections every 97 reflections |
2172 independent reflections | intensity decay: none |
1690 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.084 | Δρmax = 0.15 e Å−3 |
S = 1.03 | Δρmin = −0.17 e Å−3 |
2172 reflections | Absolute structure: Flack (1983), 880 Friedel pairs |
147 parameters | Absolute structure parameter: 0.09 (11) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.01956 (18) | −0.12260 (10) | 0.00675 (4) | 0.0884 (3) | |
O1 | 0.3998 (2) | 0.56562 (19) | 0.16726 (7) | 0.0425 (4) | |
O2 | 0.2117 (3) | 1.0211 (2) | 0.23361 (8) | 0.0482 (5) | |
H2C | 0.2839 | 1.1049 | 0.2316 | 0.058* | |
O3 | 0.5280 (3) | 0.7894 (2) | 0.25924 (7) | 0.0477 (4) | |
H3B | 0.5420 | 0.8705 | 0.2812 | 0.057* | |
N1 | 0.0604 (3) | 0.4754 (3) | 0.16049 (9) | 0.0495 (6) | |
H1B | −0.0305 | 0.4823 | 0.1916 | 0.059* | |
C1 | 0.1909 (4) | 0.6147 (3) | 0.15314 (11) | 0.0412 (6) | |
H1A | 0.1850 | 0.6517 | 0.1116 | 0.049* | |
C2 | 0.1280 (4) | 0.7577 (3) | 0.19294 (12) | 0.0457 (6) | |
H2A | 0.1197 | 0.7179 | 0.2336 | 0.055* | |
H2B | −0.0071 | 0.7960 | 0.1813 | 0.055* | |
C3 | 0.2759 (4) | 0.9032 (3) | 0.19013 (10) | 0.0392 (6) | |
H3A | 0.2653 | 0.9554 | 0.1508 | 0.047* | |
C4 | 0.4948 (4) | 0.8459 (3) | 0.19940 (10) | 0.0412 (6) | |
H4A | 0.5884 | 0.9386 | 0.1906 | 0.049* | |
C5 | 0.5384 (4) | 0.7017 (3) | 0.15789 (11) | 0.0451 (6) | |
H5A | 0.5270 | 0.7400 | 0.1171 | 0.054* | |
H5B | 0.6776 | 0.6631 | 0.1641 | 0.054* | |
C6 | 0.0505 (4) | 0.3402 (3) | 0.12239 (11) | 0.0450 (6) | |
C7 | 0.2014 (5) | 0.3069 (4) | 0.08000 (12) | 0.0549 (7) | |
H7A | 0.3118 | 0.3797 | 0.0761 | 0.066* | |
C8 | 0.1893 (5) | 0.1674 (4) | 0.04379 (12) | 0.0591 (8) | |
H8A | 0.2906 | 0.1472 | 0.0156 | 0.071* | |
C9 | 0.0287 (6) | 0.0594 (3) | 0.04936 (11) | 0.0567 (8) | |
C10 | −0.1245 (5) | 0.0904 (4) | 0.08970 (12) | 0.0580 (8) | |
H10A | −0.2348 | 0.0172 | 0.0928 | 0.070* | |
C11 | −0.1145 (5) | 0.2305 (3) | 0.12566 (12) | 0.0527 (7) | |
H11A | −0.2198 | 0.2518 | 0.1525 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1371 (9) | 0.0575 (4) | 0.0707 (5) | 0.0048 (6) | −0.0236 (6) | −0.0194 (4) |
O1 | 0.0405 (9) | 0.0404 (9) | 0.0464 (9) | −0.0016 (8) | −0.0010 (8) | −0.0021 (8) |
O2 | 0.0471 (11) | 0.0378 (10) | 0.0595 (10) | −0.0028 (9) | 0.0080 (9) | −0.0056 (9) |
O3 | 0.0561 (11) | 0.0442 (9) | 0.0429 (9) | 0.0035 (10) | −0.0106 (9) | −0.0058 (8) |
N1 | 0.0488 (13) | 0.0482 (12) | 0.0515 (12) | −0.0157 (11) | 0.0108 (11) | −0.0106 (11) |
C1 | 0.0396 (13) | 0.0424 (13) | 0.0417 (13) | −0.0043 (12) | −0.0045 (11) | 0.0018 (12) |
C2 | 0.0380 (14) | 0.0423 (14) | 0.0568 (15) | −0.0025 (11) | −0.0008 (12) | −0.0025 (13) |
C3 | 0.0419 (14) | 0.0359 (13) | 0.0399 (12) | 0.0022 (11) | −0.0002 (11) | 0.0037 (11) |
C4 | 0.0392 (14) | 0.0423 (13) | 0.0422 (12) | −0.0042 (12) | 0.0011 (11) | 0.0017 (10) |
C5 | 0.0415 (14) | 0.0480 (13) | 0.0457 (13) | −0.0077 (13) | 0.0025 (12) | −0.0025 (12) |
C6 | 0.0501 (15) | 0.0422 (13) | 0.0427 (13) | −0.0043 (13) | −0.0031 (12) | 0.0007 (11) |
C7 | 0.0566 (17) | 0.0569 (17) | 0.0513 (15) | −0.0107 (16) | 0.0078 (15) | −0.0060 (14) |
C8 | 0.073 (2) | 0.0582 (18) | 0.0464 (15) | 0.0010 (18) | 0.0044 (15) | −0.0038 (14) |
C9 | 0.085 (2) | 0.0446 (14) | 0.0408 (13) | 0.0014 (17) | −0.0127 (16) | −0.0011 (12) |
C10 | 0.0685 (19) | 0.0525 (17) | 0.0529 (16) | −0.0179 (16) | −0.0067 (15) | 0.0033 (15) |
C11 | 0.0533 (16) | 0.0551 (17) | 0.0497 (15) | −0.0173 (15) | 0.0028 (14) | −0.0034 (14) |
Cl1—C9 | 1.742 (3) | C3—H3A | 0.9800 |
O1—C5 | 1.430 (3) | C4—C5 | 1.510 (3) |
O1—C1 | 1.454 (3) | C4—H4A | 0.9800 |
O2—C3 | 1.421 (3) | C5—H5A | 0.9700 |
O2—H2C | 0.8200 | C5—H5B | 0.9700 |
O3—C4 | 1.436 (3) | C6—C11 | 1.391 (4) |
O3—H3B | 0.8200 | C6—C7 | 1.397 (4) |
N1—C6 | 1.380 (3) | C7—C8 | 1.382 (4) |
N1—C1 | 1.411 (3) | C7—H7A | 0.9300 |
N1—H1B | 0.9195 | C8—C9 | 1.364 (4) |
C1—C2 | 1.508 (3) | C8—H8A | 0.9300 |
C1—H1A | 0.9800 | C9—C10 | 1.373 (4) |
C2—C3 | 1.512 (3) | C10—C11 | 1.382 (4) |
C2—H2A | 0.9700 | C10—H10A | 0.9300 |
C2—H2B | 0.9700 | C11—H11A | 0.9300 |
C3—C4 | 1.515 (3) | ||
C5—O1—C1 | 110.91 (18) | O3—C4—H4A | 109.4 |
C3—O2—H2C | 109.5 | C5—C4—H4A | 109.4 |
C4—O3—H3B | 109.5 | C3—C4—H4A | 109.4 |
C6—N1—C1 | 124.9 (2) | O1—C5—C4 | 111.7 (2) |
C6—N1—H1B | 119.3 | O1—C5—H5A | 109.3 |
C1—N1—H1B | 115.6 | C4—C5—H5A | 109.3 |
N1—C1—O1 | 109.19 (19) | O1—C5—H5B | 109.3 |
N1—C1—C2 | 111.3 (2) | C4—C5—H5B | 109.3 |
O1—C1—C2 | 109.23 (19) | H5A—C5—H5B | 107.9 |
N1—C1—H1A | 109.0 | N1—C6—C11 | 119.7 (2) |
O1—C1—H1A | 109.0 | N1—C6—C7 | 122.7 (2) |
C2—C1—H1A | 109.0 | C11—C6—C7 | 117.6 (2) |
C1—C2—C3 | 112.6 (2) | C8—C7—C6 | 121.0 (3) |
C1—C2—H2A | 109.1 | C8—C7—H7A | 119.5 |
C3—C2—H2A | 109.1 | C6—C7—H7A | 119.5 |
C1—C2—H2B | 109.1 | C9—C8—C7 | 120.0 (3) |
C3—C2—H2B | 109.1 | C9—C8—H8A | 120.0 |
H2A—C2—H2B | 107.8 | C7—C8—H8A | 120.0 |
O2—C3—C2 | 107.00 (19) | C8—C9—C10 | 120.5 (3) |
O2—C3—C4 | 112.6 (2) | C8—C9—Cl1 | 120.2 (2) |
C2—C3—C4 | 111.4 (2) | C10—C9—Cl1 | 119.3 (2) |
O2—C3—H3A | 108.6 | C9—C10—C11 | 119.9 (3) |
C2—C3—H3A | 108.6 | C9—C10—H10A | 120.1 |
C4—C3—H3A | 108.6 | C11—C10—H10A | 120.1 |
O3—C4—C5 | 108.14 (19) | C10—C11—C6 | 121.0 (3) |
O3—C4—C3 | 111.5 (2) | C10—C11—H11A | 119.5 |
C5—C4—C3 | 108.8 (2) | C6—C11—H11A | 119.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2C···O3i | 0.82 | 1.93 | 2.739 (2) | 170 |
O3—H3B···O1i | 0.82 | 1.98 | 2.797 (2) | 175 |
N1—H1B···O2ii | 0.92 | 2.08 | 2.994 (3) | 173 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C11H14ClNO3 |
Mr | 243.68 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 295 |
a, b, c (Å) | 6.5305 (8), 7.9857 (9), 22.496 (3) |
V (Å3) | 1173.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.4 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2581, 2172, 1690 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.605 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.084, 1.03 |
No. of reflections | 2172 |
No. of parameters | 147 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.17 |
Absolute structure | Flack (1983), 880 Friedel pairs |
Absolute structure parameter | 0.09 (11) |
Computer programs: XSCANS (Bruker, 1997), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2C···O3i | 0.82 | 1.93 | 2.739 (2) | 169.6 |
O3—H3B···O1i | 0.82 | 1.98 | 2.797 (2) | 175.2 |
N1—H1B···O2ii | 0.92 | 2.08 | 2.994 (3) | 172.7 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2. |
Acknowledgements
We are grateful to the National Science Foundation of China (project grant No. 20132020).
References
Bridiau, N., Benmansour, M., Legoy, M. D. & Maugard, T. (2007). Tetrahedron, 63. 4178–4183. Google Scholar
Bruker (1997). XSCANS. Bruker AXS Inc.,Madison, Wisconsin, USA. Google Scholar
Durette, P. L., Bugianesi, R. L., Ponpipom, M. M., Shen, T. Y., Cascieri, M. A., Glitzer, M. S. & Katzen, H. M. (1978). J. Med. Chem. 21, 854–859. CrossRef CAS PubMed Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ganem, B. (1966). Acc. Chem. Res. 29, 340–347. CrossRef Web of Science Google Scholar
Katzen, H. M. (1979). J. Biol. Chem. 254, 2983–2992. CAS PubMed Web of Science Google Scholar
Ojala, W. H., Oatman, J. M. & Ojala, C. R. (2000). Carbohydr. Res. 326, 104–112. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
N-Alkyl and N-aryl glycosylamines have a wide range of biological activities (Katzen et al., 1979; Ganem, 1966), including insulin-like activity (Durette et al., 1978). They are important as junctures in glycoproteins (Ojala et al., 2000). Glycosylamines can exist either in cyclic or acyclic forms depending on reaction conditions and the particular amine used. Stereo-selective syntheses of N-aryl-glycosylamines are uncommon, but a one-pot stereoselective synthesis of beta-N-aryl-glycosides in aqueous buffers with purification by semi-preparative HPLC has been reported (Nicolas et al., 2007).
Recently, we found that 4-chlorobenzenamine reacted with 2-deoxy-L-ribose in methanol and water to give N-p-chlorophenyl-2-deoxy-α-L-ribopyranosylamine as the sole product. Herein we report the synthesis and structure (Fig. 1) of N-p-chlorophenyl-2-deoxy-α-L-ribopyranosylamine.