organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2R,5R,6S,9R,10S,13S,14S,18R)-1,6,7,8,9,14,15,16,17,17,18-Undeca­chloro­penta­cyclo­[12.2.1.16,9.02,13.05,10]octa­deca-7,15-diene

aWellington Laboratories, Research Division, Guelph, Ontario, Canada N1G 3M5, bDepartment of Chemistry, University of Guelph, Ontario, Canada N1G 2W1, and cDepartment of Chemistry, University of Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 20 May 2008; accepted 28 May 2008; online 13 June 2008)

The title compound, C18H13Cl11, is an undecachlorinated commercial flame retardant. The asymmetric unit contains two independent half-mol­ecules. The complete mol­ecules are generated by crystallographic inversion symmetry, causing the terminal H atoms and one of the Cl atoms to be disordered equally over two sites in each mol­ecule. The central eight-membered rings are in chair-type conformations. In the crystal structure, there is a single weak inter­molecular C—H⋯Cl hydrogen bond.

Related literature

For related literature, see: Riddell et al. (2008[Riddell, N., McCrindle, R., Arsenault, G. & Lough, A. J. (2008). Acta Cryst. E64, o1249.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Cl11

  • Mr = 619.23

  • Monoclinic, P 21 /c

  • a = 13.3129 (5) Å

  • b = 12.1263 (6) Å

  • c = 14.7229 (7) Å

  • β = 99.505 (3)°

  • V = 2344.18 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 150 (1) K

  • 0.26 × 0.20 × 0.15 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.715, Tmax = 0.825

  • 15654 measured reflections

  • 5338 independent reflections

  • 3481 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.118

  • S = 1.05

  • 5338 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1B—H1B⋯Cl4Ai 1.00 2.70 3.656 (4) 160
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZOSMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For background information and related references see the previous paper (Riddell et al., 2008). Dechlorane Plus (DP) is a commercial chlorinated flame retardant used in styrenic plastics (http://www.inchem.org/documents/ehc/ehc/ehc192.htm) to protect human life and property against fires. We have synthesized the dechlorinated compound (1R,2R,5R,6S,9R,10S,13S,14S,18R)-1,6,7,8,9,14,15,16,17,17,18- undecachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene. GC/MS and 1H NMR spectroscopy have confirmed the basic structure of as having the DP-like structure with only 11 chlorine atoms. An NOE NMR experiment also strongly indicated that the proton on the bridging carbon atom was facing towards the cyclooctadiene ring since a positive through space interaction was observed. However, an X-ray structure determination was required to positively confirm the stereochemistry.

The asymmetric unit contains two independent half molecules. The symmetry complete molecules are generated by crystallographic inversion symmetry, causing atoms Cl6A and Cl6B, as well as the H atoms bonded to C9A and C9B to be disordered over two sites with equal occupancies. In both independent molecules the geometric parameters are the same within experimental error. The asymmetric unit is shown in Fig. 2. In the crystal structure there is a single weak intermolecular C—H···Cl interaction (Table 1).

Related literature top

For related literature, see: Riddell et al. (2008).

Experimental top

The synthesis of the title compound was carried out at Wellington Laboratories using proprietary methods. The compound was isolated and purified using chromatographic techniques. For single-crystal x-ray crystallography, colourless crystals were grown from a solution in toluene.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distances of 0.99 and 1.00 Å and they were included in the refinement in a riding-model approximation with Uiso = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The disorder is not shown and the atoms labeled with lower case suffixes a and b are related by the symmetry operators (-x, -y+1, -z+1) and (-x+1, - y+1, -z) respectively.
(1R,2R,5R,6S,9R,10S,13S,14S,18R)-1,6,7,8,9,14,15,16,17,17,18- Undecachloropentacyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene top
Crystal data top
C18H13Cl11F(000) = 1232
Mr = 619.23Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15654 reflections
a = 13.3129 (5) Åθ = 2.8–27.5°
b = 12.1263 (6) ŵ = 1.31 mm1
c = 14.7229 (7) ÅT = 150 K
β = 99.505 (3)°Block, colourless
V = 2344.18 (18) Å30.26 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5338 independent reflections
Radiation source: fine-focus sealed tube3481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ scans and ω scans with κ offsetsh = 1717
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1415
Tmin = 0.715, Tmax = 0.825l = 1619
15654 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0314P)2 + 4.5718P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5338 reflectionsΔρmax = 0.53 e Å3
272 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (3)
Crystal data top
C18H13Cl11V = 2344.18 (18) Å3
Mr = 619.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3129 (5) ŵ = 1.31 mm1
b = 12.1263 (6) ÅT = 150 K
c = 14.7229 (7) Å0.26 × 0.20 × 0.15 mm
β = 99.505 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5338 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3481 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 0.825Rint = 0.052
15654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
5338 reflectionsΔρmin = 0.68 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.12630 (8)0.59357 (8)0.23239 (6)0.0351 (3)
Cl2A0.04105 (8)0.77914 (9)0.28215 (7)0.0390 (3)
Cl3A0.03958 (8)0.87394 (8)0.49922 (7)0.0371 (3)
Cl4A0.25958 (7)0.75232 (9)0.58340 (7)0.0375 (3)
Cl5A0.28655 (8)0.77926 (10)0.35627 (7)0.0449 (3)
Cl6A0.32477 (14)0.57426 (16)0.42481 (15)0.0351 (5)0.50
C1A0.0896 (3)0.5390 (3)0.4083 (2)0.0235 (8)
H1A0.12930.47100.39930.028*
C2A0.1294 (3)0.5849 (3)0.5085 (2)0.0229 (8)
H2A0.18540.53550.53840.027*
C3A0.0525 (3)0.5978 (3)0.5746 (2)0.0246 (8)
H3A10.00990.63310.54120.030*
H3A20.08170.64770.62540.030*
C4A0.0227 (3)0.5119 (3)0.3837 (2)0.0268 (8)
H4A10.04120.50800.31580.032*
H4A20.06260.57240.40540.032*
C5A0.1236 (3)0.6328 (3)0.3464 (2)0.0255 (8)
C6A0.0612 (3)0.7346 (3)0.3593 (3)0.0263 (8)
C7A0.0923 (3)0.7720 (3)0.4438 (3)0.0243 (8)
C8A0.1776 (3)0.6973 (3)0.4878 (2)0.0245 (8)
C9A0.2268 (3)0.6680 (3)0.4039 (3)0.0289 (9)
H9C0.27390.60370.41700.035*0.50
Cl1B0.50434 (8)0.70192 (12)0.26767 (8)0.0573 (4)
Cl2B0.68792 (8)0.51251 (11)0.29107 (7)0.0488 (3)
Cl3B0.83732 (7)0.55922 (9)0.12642 (7)0.0400 (3)
Cl4B0.74566 (9)0.77648 (10)0.00260 (9)0.0501 (3)
Cl5B0.70173 (9)0.85653 (11)0.21603 (10)0.0647 (4)
Cl6B0.52623 (17)0.8699 (2)0.0840 (2)0.0609 (8)0.50
C1B0.5100 (3)0.6208 (3)0.0915 (3)0.0312 (9)
H1B0.44600.66470.07470.037*
C2B0.5781 (3)0.6426 (3)0.0152 (3)0.0306 (9)
H2B0.54100.69520.03080.037*
C3B0.6089 (3)0.5433 (3)0.0368 (3)0.0310 (9)
H3B10.63330.48430.00790.037*
H3B20.66630.56440.06830.037*
C4B0.4792 (3)0.5024 (3)0.1091 (3)0.0304 (9)
H4B10.45860.49880.17060.037*
H4B20.53940.45420.11040.037*
C5B0.5738 (3)0.6757 (4)0.1780 (3)0.0362 (10)
C6B0.6701 (3)0.6059 (4)0.2039 (3)0.0344 (10)
C7B0.7274 (3)0.6241 (3)0.1398 (3)0.0324 (9)
C8B0.6712 (3)0.7049 (3)0.0715 (3)0.0343 (9)
C9B0.6180 (3)0.7760 (4)0.1363 (3)0.0444 (11)
H9D0.56300.82250.10080.053*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0514 (6)0.0324 (5)0.0245 (5)0.0025 (5)0.0149 (4)0.0003 (4)
Cl2A0.0392 (6)0.0357 (6)0.0398 (6)0.0080 (5)0.0005 (4)0.0127 (5)
Cl3A0.0473 (6)0.0243 (5)0.0446 (6)0.0049 (5)0.0217 (5)0.0033 (4)
Cl4A0.0297 (5)0.0500 (7)0.0331 (5)0.0137 (5)0.0057 (4)0.0082 (5)
Cl5A0.0406 (6)0.0562 (7)0.0428 (6)0.0200 (5)0.0212 (5)0.0039 (5)
Cl6A0.0289 (10)0.0275 (10)0.0519 (13)0.0056 (8)0.0154 (9)0.0000 (9)
C1A0.0272 (18)0.0192 (19)0.025 (2)0.0036 (16)0.0068 (15)0.0029 (15)
C2A0.0234 (18)0.0228 (19)0.0222 (19)0.0048 (16)0.0031 (15)0.0005 (15)
C3A0.0278 (19)0.024 (2)0.0225 (19)0.0043 (16)0.0055 (15)0.0007 (16)
C4A0.034 (2)0.026 (2)0.0194 (19)0.0004 (17)0.0010 (16)0.0025 (16)
C5A0.033 (2)0.024 (2)0.0217 (19)0.0011 (17)0.0105 (16)0.0037 (16)
C6A0.0250 (19)0.024 (2)0.031 (2)0.0031 (16)0.0074 (16)0.0079 (16)
C7A0.0302 (19)0.0164 (18)0.029 (2)0.0018 (16)0.0139 (16)0.0012 (15)
C8A0.0234 (18)0.028 (2)0.0231 (19)0.0042 (16)0.0059 (15)0.0017 (16)
C9A0.0264 (19)0.031 (2)0.031 (2)0.0052 (17)0.0111 (16)0.0046 (17)
Cl1B0.0337 (6)0.0861 (10)0.0536 (8)0.0007 (6)0.0119 (5)0.0381 (7)
Cl2B0.0441 (6)0.0722 (9)0.0271 (6)0.0022 (6)0.0024 (5)0.0005 (5)
Cl3B0.0233 (5)0.0504 (7)0.0458 (6)0.0043 (5)0.0042 (4)0.0118 (5)
Cl4B0.0484 (7)0.0451 (7)0.0570 (8)0.0176 (6)0.0088 (5)0.0010 (6)
Cl5B0.0413 (6)0.0622 (8)0.0884 (10)0.0096 (6)0.0042 (6)0.0458 (8)
Cl6B0.0358 (12)0.0373 (13)0.100 (2)0.0108 (10)0.0158 (12)0.0205 (13)
C1B0.0195 (18)0.040 (2)0.032 (2)0.0056 (18)0.0011 (16)0.0101 (19)
C2B0.0257 (19)0.030 (2)0.034 (2)0.0015 (17)0.0028 (17)0.0019 (17)
C3B0.0255 (19)0.038 (2)0.028 (2)0.0051 (18)0.0023 (16)0.0041 (18)
C4B0.0238 (19)0.042 (2)0.025 (2)0.0002 (18)0.0016 (15)0.0035 (18)
C5B0.0232 (19)0.048 (3)0.038 (2)0.0026 (19)0.0056 (17)0.016 (2)
C6B0.027 (2)0.050 (3)0.024 (2)0.0022 (19)0.0012 (16)0.0133 (19)
C7B0.0218 (19)0.041 (2)0.033 (2)0.0013 (18)0.0002 (16)0.0141 (19)
C8B0.029 (2)0.033 (2)0.039 (2)0.0032 (18)0.0017 (18)0.0076 (19)
C9B0.031 (2)0.041 (3)0.058 (3)0.006 (2)0.004 (2)0.017 (2)
Geometric parameters (Å, º) top
Cl1A—C5A1.751 (4)Cl1B—C5B1.761 (4)
Cl2A—C6A1.710 (4)Cl2B—C6B1.698 (4)
Cl3A—C7A1.696 (4)Cl3B—C7B1.701 (4)
Cl4A—C8A1.763 (4)Cl4B—C8B1.760 (4)
Cl5A—C9A1.769 (4)Cl5B—C9B1.772 (4)
Cl6A—C9A1.720 (4)Cl6B—C9B1.752 (5)
C1A—C4A1.515 (5)C1B—C4B1.527 (6)
C1A—C5A1.570 (5)C1B—C5B1.559 (5)
C1A—C2A1.584 (5)C1B—C2B1.579 (5)
C1A—H1A1.0000C1B—H1B1.0000
C2A—C3A1.533 (5)C2B—C3B1.518 (5)
C2A—C8A1.558 (5)C2B—C8B1.567 (5)
C2A—H2A1.0000C2B—H2B1.0000
C3A—C4Ai1.544 (5)C3B—C4Bii1.551 (5)
C3A—H3A10.9900C3B—H3B10.9900
C3A—H3A20.9900C3B—H3B20.9900
C4A—C3Ai1.544 (5)C4B—C3Bii1.551 (5)
C4A—H4A10.9900C4B—H4B10.9900
C4A—H4A20.9900C4B—H4B20.9900
C5A—C6A1.518 (5)C5B—C9B1.524 (7)
C5A—C9A1.548 (5)C5B—C6B1.531 (6)
C6A—C7A1.324 (5)C6B—C7B1.328 (5)
C7A—C8A1.512 (5)C7B—C8B1.511 (6)
C8A—C9A1.533 (5)C8B—C9B1.542 (6)
C4A—C1A—C5A112.7 (3)C4B—C1B—C5B112.8 (3)
C4A—C1A—C2A117.6 (3)C4B—C1B—C2B118.7 (3)
C5A—C1A—C2A101.6 (3)C5B—C1B—C2B102.2 (3)
C4A—C1A—H1A108.1C4B—C1B—H1B107.5
C5A—C1A—H1A108.1C5B—C1B—H1B107.5
C2A—C1A—H1A108.1C2B—C1B—H1B107.5
C3A—C2A—C8A112.0 (3)C3B—C2B—C8B113.2 (3)
C3A—C2A—C1A118.2 (3)C3B—C2B—C1B117.4 (3)
C8A—C2A—C1A102.2 (3)C8B—C2B—C1B101.6 (3)
C3A—C2A—H2A108.0C3B—C2B—H2B108.1
C8A—C2A—H2A108.0C8B—C2B—H2B108.1
C1A—C2A—H2A108.0C1B—C2B—H2B108.1
C2A—C3A—C4Ai114.1 (3)C2B—C3B—C4Bii113.1 (3)
C2A—C3A—H3A1108.7C2B—C3B—H3B1109.0
C4Ai—C3A—H3A1108.7C4Bii—C3B—H3B1109.0
C2A—C3A—H3A2108.7C2B—C3B—H3B2109.0
C4Ai—C3A—H3A2108.7C4Bii—C3B—H3B2109.0
H3A1—C3A—H3A2107.6H3B1—C3B—H3B2107.8
C1A—C4A—C3Ai113.6 (3)C1B—C4B—C3Bii114.4 (3)
C1A—C4A—H4A1108.8C1B—C4B—H4B1108.7
C3Ai—C4A—H4A1108.8C3Bii—C4B—H4B1108.7
C1A—C4A—H4A2108.8C1B—C4B—H4B2108.7
C3Ai—C4A—H4A2108.8C3Bii—C4B—H4B2108.7
H4A1—C4A—H4A2107.7H4B1—C4B—H4B2107.6
C6A—C5A—C9A99.3 (3)C9B—C5B—C6B100.3 (3)
C6A—C5A—C1A107.5 (3)C9B—C5B—C1B101.9 (3)
C9A—C5A—C1A101.4 (3)C6B—C5B—C1B106.8 (3)
C6A—C5A—Cl1A116.0 (3)C9B—C5B—Cl1B116.3 (3)
C9A—C5A—Cl1A116.2 (2)C6B—C5B—Cl1B115.8 (3)
C1A—C5A—Cl1A114.4 (3)C1B—C5B—Cl1B114.0 (3)
C7A—C6A—C5A107.6 (3)C7B—C6B—C5B106.7 (4)
C7A—C6A—Cl2A127.4 (3)C7B—C6B—Cl2B128.5 (3)
C5A—C6A—Cl2A124.5 (3)C5B—C6B—Cl2B124.3 (3)
C6A—C7A—C8A107.1 (3)C6B—C7B—C8B107.5 (3)
C6A—C7A—Cl3A127.7 (3)C6B—C7B—Cl3B127.8 (4)
C8A—C7A—Cl3A124.8 (3)C8B—C7B—Cl3B124.4 (3)
C7A—C8A—C9A100.6 (3)C7B—C8B—C9B100.3 (3)
C7A—C8A—C2A107.6 (3)C7B—C8B—C2B107.5 (3)
C9A—C8A—C2A101.5 (3)C9B—C8B—C2B101.2 (3)
C7A—C8A—Cl4A116.0 (3)C7B—C8B—Cl4B116.0 (3)
C9A—C8A—Cl4A116.2 (3)C9B—C8B—Cl4B116.2 (3)
C2A—C8A—Cl4A113.3 (3)C2B—C8B—Cl4B113.8 (3)
C8A—C9A—C5A92.6 (3)C5B—C9B—C8B92.9 (3)
C8A—C9A—Cl6A114.9 (3)C5B—C9B—Cl6B114.1 (3)
C5A—C9A—Cl6A119.6 (3)C8B—C9B—Cl6B116.7 (3)
C8A—C9A—Cl5A115.0 (3)C5B—C9B—Cl5B114.6 (3)
C5A—C9A—Cl5A114.2 (3)C8B—C9B—Cl5B114.5 (3)
Cl6A—C9A—Cl5A101.4 (2)Cl6B—C9B—Cl5B104.5 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1B···Cl4Aiii1.002.703.656 (4)160
Symmetry code: (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H13Cl11
Mr619.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)13.3129 (5), 12.1263 (6), 14.7229 (7)
β (°) 99.505 (3)
V3)2344.18 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.26 × 0.20 × 0.15
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.715, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
15654, 5338, 3481
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 1.05
No. of reflections5338
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.68

Computer programs: COLLECT (Nonius, 2002), DENZO–SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1B—H1B···Cl4Ai1.002.703.656 (4)160
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRiddell, N., McCrindle, R., Arsenault, G. & Lough, A. J. (2008). Acta Cryst. E64, o1249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds