metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium(II) bis­­(D-camphor-10-sulfonate)

aFaculty of Chemistry, University of Belgrade, Studentski trg 12–16, PO Box 158, 11000 Belgrade, Republic of Serbia, bDepartment of Chemistry, Institute of Chemistry, Technology and Metallurgy, Studentski trg 14, 11000 Belgrade, Republic of Serbia, and cDepartamento de Química Inorgánica y Analìtica, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
*Correspondence e-mail: djeremic@chem.bg.ac.yu

(Received 23 May 2008; accepted 13 June 2008; online 21 June 2008)

The structure of the title complex, [Mg(H2O)6](C10H15O4S)2, consists of regular octa­hedral [Mg(H2O)6]2+ cations and D-camphor-10-sulfonate anions. A three-dimensional supra­molecular architecture is formed via hydrogen-bond inter­actions [O—H⋯O = 2.723 (2)–2.833 (2) Å] to give alternating layers of [Mg(H2O)6]2+ cations and D-camphor-10-sulfonate anions. The title compound is isomorphous with the zinc, copper, cadmium and nickel analogues.

Related literature

For related literature, see: Baldacci (1938[Baldacci, U. (1938). Arch. Farmacol. Sper. Sci. Affin.65, 102-104.]); Couldwell et al. (1978[Couldwell, C., Prout, K., Robey, D., Taylor, R. & Rossotti, F. J. C. (1978). Acta Cryst. B34, 1491-1499.]); Henderson & Nicholson (1995[Henderson, W. & Nicholson, B. K. (1995). Acta Cryst. C51, 37-40.]); Schepke et al. (2007[Schepke, M., Edelmann, F. T. & Blaurock, S. (2007). Acta Cryst. E63, m2071.]); Zhou et al. (2003[Zhou, J.-S., Cai, J.-W. & Ng, S. W. (2003). Acta Cryst. E59, o1185-o1186.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6](C10H15O4S)2

  • Mr = 594.97

  • Monoclinic, P 21

  • a = 11.75456 (10) Å

  • b = 7.05950 (8) Å

  • c = 17.22794 (15) Å

  • β = 93.1811 (8)°

  • V = 1427.39 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 130 (2) K

  • 0.5 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd., Abingdon, England.]) Tmin = 0.917, Tmax = 1.000 (expected range = 0.869–0.947)

  • 40278 measured reflections

  • 8136 independent reflections

  • 7028 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 0.99

  • 8136 reflections

  • 386 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3459 Friedel pairs

  • Flack parameter: 0.03 (4)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd., Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd., Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound was prepared by the reaction of magnesium tape with a solution containing D-camphor-10-sulfonic acid. Crystallization was achieved by placing a platinum wire into the solution to give a controlled zone cooling as well to provide nucleation centres. By this method we were able to produce crystals with dimensions typically from 4 × 1 × 0.4 mm to 12 × 10 × 3 mm (Fig. 1). Since crystals are easily obtainable in large size they could be of possible use as optical filters for UV/VIS/IR light, which is under further investigation as part of our ongoing research project. Also, the camphorsulfonate anion exhibits low toxicity (Baldacci, 1938) so its magnesium salt could be useful as a food supplement. The structure is isomorphous to those of analogous metal salts with Zn(II), Cu(II), Cd(II) and Ni(II), which have been structurally characterized previously (Couldwell et al., 1978; Henderson & Nicholson, 1995; Schepke et al., 2007; Zhou et al., 2003).

As found in the crystal lattice of other isomorph compounds [M(H2O)6](C10H15O4S)2 (M = Zn(II), Cu(II), Cd(II) and Ni(II); Couldwell et al., 1978; Henderson & Nicholson, 1995; Schepke et al., 2007; Zhou et al., 2003), the title compound structure consist of [Mg(H2O)6]2+ cations and two crystallogaphically independent D-camphor-10-sulfonate anions (Fig. 2). The magnesium atom in [Mg(H2O)6](C10H15O4S)2 has octahedral coordination. The Mg—O distances are in the range from 2.0315 (9) to 2.060 (2) Å and O—Mg—O angles are between 85.34 (6) and 94.23 (4)°. Extensive hydrogen-bonding stabilizes the structure (O···O distance = 2.723 (2)–2.833 (2) Å; O—H···O angle = 163 (3)–178 (2)°). These hydrogen bonds are formed between the coordinated water molecules and the O atoms of the SO3- groups.

Related literature top

For related literature, see: Baldacci (1938); Couldwell et al. (1978); Henderson & Nicholson (1995); Schepke et al. (2007); Zhou et al. (2003).

Experimental top

D-camphorsulfonic acid monohydrate (25.00 g) was dissolved in 80 ml of deionized water. Magnesium tape (2 g) was added and the solution was left at room temperature until all magnesium had dissolved. The solution was filtered, heated in a water bath and platinum wire (0.5 mm diameter, 10 cm long) was added as a crystallization centre. The solution was allowed too cool slowly in a water bath over the weekend. The monocrystals obtained were up to one centimetre in length, and were transparent in visible light. Crystals of a suitable size for X-ray analysis were also present.

Refinement top

The water H atoms were found and yielded reasonable bond lengths and angles (O—H bond length: 0.65 (3)–0.94 (3) Å), all other H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.98–1.00 Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystals of [Mg(H2O)6](C10H15O4S)2.
[Figure 2] Fig. 2. ORTEP representation of [Mg(H2O)6](C10H15O4S)2. Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.
Hexaaquamagnesium(II) bis(D-camphor-10-sulfonate) top
Crystal data top
[Mg(H2O)6](C10H15O4S)2F(000) = 636
Mr = 594.97Dx = 1.384 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 21884 reflections
a = 11.75456 (10) Åθ = 2.9–32.2°
b = 7.05950 (8) ŵ = 0.27 mm1
c = 17.22794 (15) ÅT = 130 K
β = 93.1811 (8)°Prism, colourless
V = 1427.39 (2) Å30.5 × 0.2 × 0.2 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
8136 independent reflections
Graphite monochromator7028 reflections with I > 2σ(I)
Detector resolution: 16.356 pixels mm-1Rint = 0.025
ω and ϕ scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1616
Tmin = 0.918, Tmax = 1k = 910
40278 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
8136 reflectionsΔρmax = 0.37 e Å3
386 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 3459 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
[Mg(H2O)6](C10H15O4S)2V = 1427.39 (2) Å3
Mr = 594.97Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.75456 (10) ŵ = 0.27 mm1
b = 7.05950 (8) ÅT = 130 K
c = 17.22794 (15) Å0.5 × 0.2 × 0.2 mm
β = 93.1811 (8)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
8136 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
7028 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 1Rint = 0.025
40278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 0.37 e Å3
S = 0.99Δρmin = 0.36 e Å3
8136 reflectionsAbsolute structure: Flack (1983), 3459 Friedel pairs
386 parametersAbsolute structure parameter: 0.03 (4)
1 restraint
Special details top

Experimental. CrysAlis RED: Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.25718 (3)0.53807 (10)0.005258 (19)0.01645 (8)
S10.91451 (2)0.53891 (6)0.154547 (14)0.01601 (6)
S20.42218 (2)0.03871 (6)0.169663 (14)0.01538 (6)
O10.39380 (8)0.5349 (3)0.08377 (6)0.0314 (2)
O20.17955 (11)0.32080 (18)0.06080 (7)0.0233 (3)
O30.11878 (8)0.5400 (2)0.07079 (6)0.0329 (2)
O40.33376 (10)0.75739 (18)0.05030 (7)0.0230 (2)
O50.33458 (11)0.33056 (18)0.05722 (7)0.0237 (3)
O60.18050 (11)0.74588 (18)0.06692 (7)0.0270 (3)
O70.96709 (11)0.29196 (18)0.38660 (7)0.0356 (3)
O80.79319 (6)0.5401 (2)0.13121 (5)0.02163 (17)
O90.97210 (9)0.71014 (15)0.13082 (7)0.0206 (2)
O100.97185 (9)0.36782 (15)0.13013 (7)0.0214 (2)
O110.38282 (9)0.10715 (19)0.42956 (6)0.0408 (3)
O120.30410 (6)0.03885 (19)0.13849 (4)0.02073 (16)
O130.48094 (9)0.13891 (15)0.15552 (6)0.0196 (2)
O140.48500 (9)0.20329 (15)0.14446 (7)0.0210 (2)
C11.03414 (13)0.4160 (2)0.37454 (8)0.0252 (3)
C21.13297 (14)0.4805 (2)0.42881 (9)0.0325 (4)
H2C1.18890.37730.43890.039*
H2D1.10610.52680.47890.039*
C31.18376 (12)0.6419 (2)0.38198 (8)0.0242 (3)
H3C1.23250.73260.41360.029*
C41.24354 (10)0.5464 (3)0.31519 (7)0.0265 (3)
H4C1.29270.44070.33460.032*
H4D1.29040.63840.28760.032*
C51.14265 (11)0.4728 (2)0.26156 (8)0.0212 (3)
H5C1.14410.33290.25780.025*
H5D1.14510.52720.20870.025*
C61.03495 (9)0.5416 (3)0.30208 (6)0.0176 (2)
C71.07629 (11)0.7315 (2)0.34042 (7)0.0199 (3)
C80.99319 (13)0.8131 (3)0.39685 (9)0.0284 (3)
H8A1.03280.90630.43080.043*
H8B0.96390.71070.42850.043*
H8C0.92970.87460.36740.043*
C91.10418 (12)0.8870 (2)0.28336 (8)0.0248 (3)
H9A1.15580.83710.24560.037*
H9B1.14090.99290.31170.037*
H9C1.03380.93130.25610.037*
C100.91934 (9)0.5356 (3)0.25743 (6)0.0198 (2)
H10A0.87440.64490.27470.024*
H10B0.87970.41950.27350.024*
C110.47837 (11)0.0789 (2)0.40963 (7)0.0255 (3)
C120.58803 (12)0.0905 (2)0.46036 (8)0.0299 (4)
H12A0.58750.0010.50460.036*
H12B0.60160.22050.48040.036*
C130.67642 (10)0.0338 (3)0.40264 (6)0.0242 (2)
H130.75630.07160.41860.029*
C140.66032 (12)0.1789 (2)0.38768 (8)0.0251 (3)
H14A0.65640.24970.43710.03*
H14B0.72310.23090.35810.03*
C150.54503 (11)0.1880 (2)0.33913 (8)0.0208 (3)
H15A0.4870.25730.36750.025*
H15B0.55420.25060.28840.025*
C160.51133 (9)0.0242 (2)0.32789 (6)0.0178 (2)
C170.62946 (10)0.1228 (2)0.32492 (8)0.0195 (3)
C180.62088 (13)0.3390 (2)0.32693 (10)0.0313 (3)
H18A0.56670.37680.36530.047*
H18B0.59460.38580.27550.047*
H18C0.69590.39290.34140.047*
C190.70229 (10)0.0660 (2)0.25786 (7)0.0237 (3)
H19A0.6950.07050.24860.036*
H19B0.78220.09730.27120.036*
H19C0.67630.13490.21080.036*
C200.41039 (10)0.0635 (2)0.27123 (6)0.0181 (3)
H20A0.38550.19510.28060.022*
H20B0.34760.02040.28590.022*
H1A0.4206 (19)0.618 (3)0.1021 (13)0.038 (7)*
H1B0.422 (2)0.433 (4)0.1065 (15)0.053 (7)*
H2A0.224 (2)0.225 (4)0.0849 (14)0.057 (7)*
H2B0.129 (2)0.330 (4)0.0758 (14)0.043 (7)*
H3A0.084 (3)0.436 (4)0.0930 (17)0.078 (9)*
H3B0.0917 (15)0.625 (3)0.0876 (11)0.016 (5)*
H4A0.3031 (16)0.840 (3)0.0697 (11)0.024 (5)*
H4B0.3943 (18)0.738 (3)0.0788 (12)0.032 (5)*
H5A0.379 (2)0.345 (4)0.0771 (14)0.046 (8)*
H5B0.289 (2)0.237 (4)0.0783 (15)0.058 (7)*
H6A0.1136 (17)0.735 (3)0.0861 (11)0.028 (5)*
H6B0.2102 (15)0.842 (3)0.0867 (10)0.021 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.01617 (16)0.01541 (19)0.01764 (16)0.0001 (2)0.00021 (12)0.0004 (2)
S10.01318 (10)0.01544 (14)0.01919 (11)0.00033 (17)0.00115 (8)0.00051 (18)
S20.01383 (11)0.01487 (14)0.01727 (11)0.00042 (17)0.00063 (8)0.00043 (17)
O10.0348 (5)0.0163 (5)0.0407 (5)0.0004 (7)0.0202 (4)0.0014 (7)
O20.0194 (6)0.0218 (7)0.0290 (6)0.0016 (5)0.0047 (5)0.0055 (5)
O30.0357 (5)0.0154 (5)0.0448 (5)0.0009 (7)0.0222 (4)0.0015 (7)
O40.0206 (6)0.0205 (7)0.0284 (6)0.0041 (5)0.0054 (5)0.0046 (5)
O50.0222 (6)0.0205 (7)0.0293 (6)0.0030 (5)0.0089 (5)0.0061 (5)
O60.0208 (6)0.0243 (7)0.0368 (7)0.0046 (5)0.0091 (5)0.0110 (5)
O70.0463 (7)0.0282 (7)0.0319 (6)0.0108 (6)0.0003 (5)0.0084 (5)
O80.0143 (3)0.0222 (5)0.0279 (4)0.0002 (6)0.0038 (3)0.0001 (6)
O90.0179 (5)0.0171 (6)0.0268 (5)0.0005 (4)0.0010 (4)0.0031 (4)
O100.0185 (5)0.0189 (6)0.0262 (5)0.0010 (4)0.0024 (4)0.0050 (5)
O110.0286 (5)0.0685 (10)0.0260 (5)0.0044 (5)0.0075 (4)0.0109 (5)
O120.0154 (3)0.0219 (5)0.0242 (4)0.0005 (6)0.0048 (3)0.0001 (6)
O130.0198 (5)0.0178 (6)0.0210 (5)0.0023 (4)0.0013 (4)0.0032 (4)
O140.0198 (5)0.0173 (6)0.0259 (5)0.0012 (4)0.0019 (4)0.0040 (4)
C10.0293 (7)0.0242 (8)0.0216 (6)0.0004 (6)0.0017 (5)0.0019 (5)
C20.0360 (8)0.0352 (10)0.0252 (6)0.0009 (6)0.0085 (6)0.0052 (6)
C30.0232 (6)0.0257 (8)0.0229 (6)0.0010 (6)0.0060 (5)0.0031 (5)
C40.0174 (5)0.0306 (7)0.0310 (6)0.0049 (8)0.0046 (4)0.0059 (8)
C50.0176 (6)0.0218 (7)0.0239 (6)0.0012 (5)0.0016 (5)0.0041 (5)
C60.0168 (4)0.0174 (6)0.0182 (4)0.0024 (7)0.0014 (3)0.0004 (7)
C70.0173 (6)0.0210 (8)0.0213 (6)0.0008 (5)0.0010 (5)0.0042 (5)
C80.0253 (7)0.0312 (9)0.0293 (8)0.0015 (7)0.0074 (6)0.0085 (7)
C90.0231 (6)0.0207 (8)0.0306 (7)0.0037 (6)0.0010 (5)0.0004 (6)
C100.0154 (4)0.0253 (6)0.0187 (4)0.0024 (7)0.0012 (4)0.0009 (7)
C110.0255 (6)0.0321 (10)0.0192 (5)0.0005 (6)0.0027 (5)0.0044 (5)
C120.0301 (7)0.0402 (11)0.0189 (6)0.0002 (6)0.0021 (5)0.0070 (5)
C130.0209 (5)0.0309 (7)0.0204 (5)0.0021 (8)0.0039 (4)0.0012 (8)
C140.0240 (6)0.0263 (8)0.0244 (6)0.0026 (6)0.0034 (5)0.0044 (6)
C150.0222 (6)0.0188 (7)0.0211 (6)0.0003 (5)0.0011 (5)0.0035 (5)
C160.0170 (5)0.0194 (7)0.0171 (4)0.0018 (6)0.0000 (4)0.0003 (6)
C170.0156 (6)0.0195 (7)0.0232 (6)0.0027 (5)0.0012 (4)0.0003 (5)
C180.0312 (7)0.0220 (9)0.0399 (8)0.0050 (6)0.0041 (6)0.0022 (6)
C190.0169 (5)0.0306 (9)0.0237 (5)0.0004 (6)0.0021 (4)0.0038 (6)
C200.0140 (4)0.0215 (8)0.0191 (5)0.0014 (5)0.0014 (4)0.0013 (5)
Geometric parameters (Å, º) top
Mg1—O32.0315 (9)C5—H5C0.99
Mg1—O12.0415 (10)C5—H5D0.99
Mg1—O22.0489 (14)C6—C101.5245 (14)
Mg1—O62.0492 (14)C6—C71.560 (2)
Mg1—O42.0541 (14)C7—C91.522 (2)
Mg1—O52.0594 (14)C7—C81.5286 (19)
S1—O91.4551 (12)C8—H8A0.98
S1—O101.4565 (11)C8—H8B0.98
S1—O81.4600 (7)C8—H8C0.98
S1—C101.7704 (11)C9—H9A0.98
S2—O141.4558 (11)C9—H9B0.98
S2—O131.4586 (11)C9—H9C0.98
S2—O121.4602 (7)C10—H10A0.99
S2—C201.7715 (11)C10—H10B0.99
O1—H1A0.73 (2)C11—C121.5190 (19)
O1—H1B0.87 (3)C11—C161.5308 (17)
O2—H2A0.94 (3)C12—C131.5309 (19)
O2—H2B0.66 (2)C12—H12A0.99
O3—H3A0.92 (3)C12—H12B0.99
O3—H3B0.734 (19)C13—C141.534 (3)
O4—H4A0.75 (2)C13—C171.5524 (18)
O4—H4B0.90 (2)C13—H131
O5—H5A0.65 (3)C14—C151.5538 (17)
O5—H5B0.91 (3)C14—H14A0.99
O6—H6A0.87 (2)C14—H14B0.99
O6—H6B0.829 (19)C15—C161.559 (2)
O7—C11.2038 (19)C15—H15A0.99
O11—C111.2092 (17)C15—H15B0.99
C1—C21.520 (2)C16—C201.5195 (15)
C1—C61.5317 (19)C16—C171.5568 (18)
C2—C31.536 (2)C17—C191.5290 (18)
C2—H2C0.99C17—C181.530 (2)
C2—H2D0.99C18—H18A0.98
C3—C41.5368 (19)C18—H18B0.98
C3—C71.5520 (19)C18—H18C0.98
C3—H3C1C19—H19A0.98
C4—C51.5518 (17)C19—H19B0.98
C4—H4C0.99C19—H19C0.98
C4—H4D0.99C20—H20A0.99
C5—C61.5568 (17)C20—H20B0.99
O3—Mg1—O1178.64 (5)C8—C7—C3113.12 (12)
O3—Mg1—O286.83 (6)C9—C7—C6114.83 (11)
O1—Mg1—O292.10 (6)C8—C7—C6113.46 (11)
O3—Mg1—O688.28 (6)C3—C7—C694.10 (11)
O1—Mg1—O690.97 (6)C7—C8—H8A109.5
O2—Mg1—O694.23 (4)C7—C8—H8B109.5
O3—Mg1—O492.89 (6)H8A—C8—H8B109.5
O1—Mg1—O488.17 (6)C7—C8—H8C109.5
O2—Mg1—O4179.49 (6)H8A—C8—H8C109.5
O6—Mg1—O485.34 (6)H8B—C8—H8C109.5
O3—Mg1—O591.65 (6)C7—C9—H9A109.5
O1—Mg1—O589.11 (6)C7—C9—H9B109.5
O2—Mg1—O586.14 (6)H9A—C9—H9B109.5
O6—Mg1—O5179.62 (7)C7—C9—H9C109.5
O4—Mg1—O594.30 (4)H9A—C9—H9C109.5
O9—S1—O10112.20 (5)H9B—C9—H9C109.5
O9—S1—O8112.36 (7)C6—C10—S1118.88 (7)
O10—S1—O8112.69 (7)C6—C10—H10A107.6
O9—S1—C10107.62 (8)S1—C10—H10A107.6
O10—S1—C10106.77 (8)C6—C10—H10B107.6
O8—S1—C10104.62 (5)S1—C10—H10B107.6
O14—S2—O13112.56 (5)H10A—C10—H10B107
O14—S2—O12112.17 (7)O11—C11—C12126.85 (12)
O13—S2—O12112.85 (7)O11—C11—C16126.12 (12)
O14—S2—C20106.54 (7)C12—C11—C16107.04 (10)
O13—S2—C20108.27 (7)C11—C12—C13101.36 (10)
O12—S2—C20103.79 (5)C11—C12—H12A111.5
Mg1—O1—H1A125.6 (18)C13—C12—H12A111.5
Mg1—O1—H1B124.8 (16)C11—C12—H12B111.5
H1A—O1—H1B108.9 (18)C13—C12—H12B111.5
Mg1—O2—H2A119.9 (14)H12A—C12—H12B109.3
Mg1—O2—H2B123 (2)C12—C13—C14106.47 (13)
H2A—O2—H2B113 (3)C12—C13—C17103.46 (11)
Mg1—O3—H3A126.0 (18)C14—C13—C17102.52 (10)
Mg1—O3—H3B125.1 (14)C12—C13—H13114.4
H3A—O3—H3B108.7 (18)C14—C13—H13114.4
Mg1—O4—H4A125.3 (14)C17—C13—H13114.4
Mg1—O4—H4B121.2 (13)C13—C14—C15103.09 (10)
H4A—O4—H4B104.6 (19)C13—C14—H14A111.1
Mg1—O5—H5A124 (2)C15—C14—H14A111.1
Mg1—O5—H5B117.1 (15)C13—C14—H14B111.1
H5A—O5—H5B112 (3)C15—C14—H14B111.1
Mg1—O6—H6A124.5 (13)H14A—C14—H14B109.1
Mg1—O6—H6B127.8 (12)C14—C15—C16103.62 (11)
H6A—O6—H6B106.4 (17)C14—C15—H15A111
O7—C1—C2126.67 (13)C16—C15—H15A111
O7—C1—C6126.55 (13)C14—C15—H15B111
C2—C1—C6106.77 (12)C16—C15—H15B111
C1—C2—C3101.85 (11)H15A—C15—H15B109
C1—C2—H2C111.4C20—C16—C11108.45 (10)
C3—C2—H2C111.4C20—C16—C17124.28 (12)
C1—C2—H2D111.4C11—C16—C17100.90 (10)
C3—C2—H2D111.4C20—C16—C15116.06 (12)
H2C—C2—H2D109.3C11—C16—C15101.75 (11)
C2—C3—C4105.97 (13)C17—C16—C15102.29 (10)
C2—C3—C7102.39 (11)C19—C17—C18108.60 (13)
C4—C3—C7103.17 (10)C19—C17—C13111.01 (11)
C2—C3—H3C114.6C18—C17—C13113.88 (13)
C4—C3—H3C114.6C19—C17—C16116.45 (11)
C7—C3—H3C114.6C18—C17—C16112.67 (12)
C3—C4—C5103.09 (10)C13—C17—C1693.77 (10)
C3—C4—H4C111.1C17—C18—H18A109.5
C5—C4—H4C111.1C17—C18—H18B109.5
C3—C4—H4D111.1H18A—C18—H18B109.5
C5—C4—H4D111.1C17—C18—H18C109.5
H4C—C4—H4D109.1H18A—C18—H18C109.5
C4—C5—C6104.03 (10)H18B—C18—H18C109.5
C4—C5—H5C111C17—C19—H19A109.5
C6—C5—H5C111C17—C19—H19B109.5
C4—C5—H5D111H19A—C19—H19B109.5
C6—C5—H5D111C17—C19—H19C109.5
H5C—C5—H5D109H19A—C19—H19C109.5
C10—C6—C1110.45 (11)H19B—C19—H19C109.5
C10—C6—C5119.30 (10)C16—C20—S2121.03 (8)
C1—C6—C5103.12 (12)C16—C20—H20A107.1
C10—C6—C7119.05 (14)S2—C20—H20A107.1
C1—C6—C799.69 (10)C16—C20—H20B107.1
C5—C6—C7102.46 (10)S2—C20—H20B107.1
C9—C7—C8107.88 (13)H20A—C20—H20B106.8
C9—C7—C3113.15 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5OA···O60.89 (3)1.87 (3)2.7329 (18)163 (3)
O1—H1A···O13i0.73 (2)2.06 (2)2.782 (2)175 (2)
O1—H1B···O140.88 (3)1.89 (3)2.757 (2)174 (2)
O2—H2A···O120.94 (3)1.84 (3)2.7711 (17)176 (2)
O2—H2B···O10ii0.66 (2)2.13 (2)2.7966 (17)176 (2)
O3—H3A···O9iii0.91 (3)1.83 (3)2.7406 (17)173 (3)
O3—H3B···O10iv0.73 (2)1.99 (2)2.7230 (17)175.6 (18)
O4—H4A···O8iv0.75 (2)2.07 (2)2.8146 (17)173 (2)
O4—H4B···O14iv0.90 (2)1.88 (2)2.7748 (16)176.1 (19)
O5—H5A···O13iv0.65 (2)2.19 (2)2.8327 (16)172 (3)
O5—H5B···O8iii0.91 (3)1.90 (3)2.8058 (17)173 (2)
O6—H6A···O9ii0.87 (2)1.88 (2)2.7524 (17)178 (2)
O6—H6B···O12i0.83 (2)1.959 (19)2.7767 (17)169.5 (18)
C10—H10B···O70.992.332.844 (2)111
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y1/2, z; (iv) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6](C10H15O4S)2
Mr594.97
Crystal system, space groupMonoclinic, P21
Temperature (K)130
a, b, c (Å)11.75456 (10), 7.05950 (8), 17.22794 (15)
β (°) 93.1811 (8)
V3)1427.39 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.5 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.918, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
40278, 8136, 7028
Rint0.025
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 0.99
No. of reflections8136
No. of parameters386
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.36
Absolute structureFlack (1983), 3459 Friedel pairs
Absolute structure parameter0.03 (4)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors are grateful to the Ministry of Science and Environmental Protection of the Republic of Serbia for financial support (grant No. 142062).

References

First citationBaldacci, U. (1938). Arch. Farmacol. Sper. Sci. Affin.65, 102–104.  Google Scholar
First citationCouldwell, C., Prout, K., Robey, D., Taylor, R. & Rossotti, F. J. C. (1978). Acta Cryst. B34, 1491–1499.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenderson, W. & Nicholson, B. K. (1995). Acta Cryst. C51, 37–40.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationSchepke, M., Edelmann, F. T. & Blaurock, S. (2007). Acta Cryst. E63, m2071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, J.-S., Cai, J.-W. & Ng, S. W. (2003). Acta Cryst. E59, o1185–o1186.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds