organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 2,5-dioxopyrrolidin-1-yl carbonate

aDepartment of Chemistry, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: xpengxiang@xmu.edu.cn

(Received 2 April 2008; accepted 27 May 2008; online 21 June 2008)

The asymmetric unit of the title compound, C12H11NO5, contains two independent mol­ecules with similar geometric parameters but different orientations of the phenyl rings. The mol­ecular packing is stabilized by weak nonclassical C—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Alenka (1982[Alenka, P. (1982). Can. J. Chem. 60, 976-980.]); Wang et al. (2006[Wang, T.-J., Fang, H., Cheng, F., Tang, G. & Zhao, Y.-F. (2006). Acta Cryst. E62, o5784-o5785.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO5

  • Mr = 249.22

  • Monoclinic, P 21

  • a = 12.9348 (6) Å

  • b = 6.0151 (3) Å

  • c = 16.5398 (9) Å

  • β = 106.170 (5)°

  • V = 1235.96 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.60 × 0.50 × 0.37 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.962

  • 7601 measured reflections

  • 2648 independent reflections

  • 1646 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 0.90

  • 2648 reflections

  • 325 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.97 2.56 3.251 (4) 128
C8A—H8AA⋯O4ii 0.93 2.47 3.398 (5) 172
C10—H10A⋯O1Aii 0.97 2.48 3.057 (5) 118
C2A—H2AA⋯O1iii 0.97 2.49 3.417 (5) 161
C6A—H6AA⋯O5Aiv 0.93 2.60 3.354 (6) 139
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), is a more convenient and mild reagent than benzyl carbonochloridate in protecting amino acids. It can also be used in the synthesis of a series of biologically active molecules (Alenka, 1982).

The asymmetric unit of (I) contains two independent molecules, the atoms of the second molecule have been identified by the letter A in their labels (Fig. 1). The two molecules adopt different orientations of the phenyl rings, as reflected by the torsion angles O2—C2—C3—C8 and O2—C2—C3—C4 with values -48.6 (4) and 134.7 (3)°, respectively, in the first molecule as compared with the values of the corresponding torsion angles in the second molecule being -88.5 (4) and 95.3 (5)°, respectively. Furthermore, the bond lengths and angles also have some slight differences. For example, the bond lengths O3—N1 and O3A—N1A are 1.391 (3) and 1.376 (4) Å, respectively. As to the bond angles, the values of the angles O1—C1—O3 and O1A—C1A—O3A are 124.9 (3) and 123.3 (3)°, respectively. Bond lengths and angles in (I) are in agreement with those reported for a similar compound (Wang et al., 2006). The structure contains rather weak non-classical hydrogen bonds of the type C—H···O involving the carbonyl groups (Table 1).

Related literature top

For related literature, see: Alenka (1982); Wang et al. (2006).

Experimental top

To a stirred solution of benzyl chloroformate (3.41 g, 20 mmol) and N-hydroxysuccinimide (2.30 g, 20 mmol) in methylene chloride (20 ml) at room temperature was added dropwise triethylamine (2.90 ml, 20 mmol). After stirring for 10 h at room temperature, the mixture was concentrated under vacuum and the crude product was purified by column chromatography (petroleum ether-ethyl acetate, 4:1) to give the title compound as a white solid in 88% yield. Single crystals of (I) were obtained by slow evaporation of a petroleum ether-ethyl acetate solution (1:1 v/v).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene), with Uiso(H) = 1.2Ueq(C) for all H atoms. In the absence of significant anomalous scattering effects, the absolute configuration of (I) could not be determined. Therefore, Friedel pairs (1632) were merged.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I) in the asymmetric unit, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (arbitrary spheres for H atoms).
Benzyl 2,5-dioxopyrrolidin-1-yl carbonate top
Crystal data top
C12H11NO5F(000) = 520
Mr = 249.22Dx = 1.339 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2829 reflections
a = 12.9348 (6) Åθ = 2.6–32.7°
b = 6.0151 (3) ŵ = 0.11 mm1
c = 16.5398 (9) ÅT = 293 K
β = 106.170 (5)°Block, colorless
V = 1235.96 (11) Å30.60 × 0.50 × 0.37 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
2648 independent reflections
Radiation source: fine-focus sealed tube1646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.939, Tmax = 0.962k = 76
7601 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0784P)2]
where P = (Fo2 + 2Fc2)/3
2648 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C12H11NO5V = 1235.96 (11) Å3
Mr = 249.22Z = 4
Monoclinic, P21Mo Kα radiation
a = 12.9348 (6) ŵ = 0.11 mm1
b = 6.0151 (3) ÅT = 293 K
c = 16.5398 (9) Å0.60 × 0.50 × 0.37 mm
β = 106.170 (5)°
Data collection top
Bruker APEX area-detector
diffractometer
2648 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1646 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.962Rint = 0.029
7601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.113H-atom parameters constrained
S = 0.90Δρmax = 0.16 e Å3
2648 reflectionsΔρmin = 0.16 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27634 (19)0.9193 (4)0.12266 (14)0.0590 (6)
O20.23745 (17)0.8957 (3)0.00217 (13)0.0497 (5)
O30.31938 (17)0.6230 (4)0.03469 (13)0.0505 (6)
O40.21313 (18)0.4121 (5)0.18601 (15)0.0656 (6)
O50.53866 (19)0.6359 (5)0.02062 (18)0.0748 (8)
N10.36798 (19)0.5329 (4)0.09240 (16)0.0455 (6)
C10.2760 (2)0.8299 (5)0.0593 (2)0.0444 (7)
C20.1931 (3)1.1212 (6)0.0092 (2)0.0608 (9)
H2A0.14031.13370.06370.073*
H2B0.25001.22780.00700.073*
C30.1417 (2)1.1683 (6)0.05872 (19)0.0472 (8)
C40.1608 (3)1.3686 (7)0.1003 (2)0.0679 (10)
H4A0.21061.46820.09000.081*
C50.1038 (4)1.4196 (9)0.1584 (3)0.0840 (13)
H5A0.11371.55750.18490.101*
C60.0353 (4)1.2742 (11)0.1766 (3)0.0891 (15)
H6A0.00011.30840.21700.107*
C70.0174 (4)1.0773 (10)0.1359 (3)0.0933 (15)
H7A0.03210.97790.14670.112*
C80.0722 (3)1.0237 (8)0.0785 (2)0.0661 (10)
H8A0.06130.88500.05260.079*
C90.3091 (2)0.4209 (5)0.16335 (19)0.0461 (7)
C100.3907 (3)0.3163 (6)0.1998 (2)0.0565 (9)
H10A0.37610.35250.25910.068*
H10B0.39030.15600.19380.068*
C110.4985 (3)0.4128 (7)0.1500 (2)0.0623 (9)
H11A0.55000.29460.12890.075*
H11B0.52710.51010.18530.075*
C120.4779 (3)0.5406 (6)0.0785 (2)0.0553 (9)
O1A0.6443 (2)0.2514 (6)0.29926 (19)0.0827 (9)
O2A0.77413 (16)0.4716 (5)0.37734 (14)0.0616 (7)
O3A0.62034 (17)0.4715 (5)0.40198 (16)0.0689 (7)
O4A0.4335 (3)0.6375 (7)0.2938 (3)0.1198 (14)
O5A0.5736 (2)0.0935 (7)0.4792 (2)0.1059 (12)
N1A0.5208 (2)0.3728 (6)0.3867 (2)0.0622 (8)
C1A0.6797 (3)0.3790 (7)0.3534 (2)0.0550 (8)
C2A0.8508 (3)0.3870 (10)0.3332 (3)0.0911 (16)
H2AA0.82640.42630.27400.109*
H2AB0.85520.22620.33750.109*
C3A0.9578 (2)0.4857 (7)0.3717 (2)0.0557 (9)
C4A1.0340 (3)0.3744 (8)0.4333 (2)0.0709 (11)
H4AA1.01770.23720.45270.085*
C5A1.1365 (3)0.4690 (11)0.4670 (3)0.0887 (16)
H5AA1.18740.39680.50990.106*
C6A1.1608 (3)0.6646 (11)0.4368 (3)0.0895 (15)
H6AA1.22920.72520.45780.107*
C7A1.0853 (4)0.7737 (9)0.3755 (3)0.0862 (13)
H7AA1.10200.90960.35550.103*
C8A0.9857 (3)0.6845 (8)0.3435 (3)0.0706 (11)
H8AA0.93530.76050.30150.085*
C9A0.4312 (3)0.4689 (9)0.3325 (3)0.0754 (12)
C10A0.3393 (3)0.3194 (10)0.3337 (3)0.0832 (14)
H10C0.30910.25240.27880.100*
H10D0.28310.40180.34900.100*
C11A0.3865 (3)0.1416 (8)0.3994 (3)0.0777 (12)
H11C0.35440.15020.44580.093*
H11D0.37360.00560.37470.093*
C12A0.5045 (3)0.1884 (8)0.4293 (3)0.0673 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0811 (15)0.0513 (14)0.0528 (13)0.0115 (13)0.0323 (12)0.0095 (12)
O20.0626 (12)0.0399 (12)0.0566 (12)0.0124 (11)0.0329 (10)0.0057 (11)
O30.0624 (13)0.0440 (13)0.0512 (13)0.0133 (11)0.0258 (10)0.0033 (10)
O40.0546 (14)0.0698 (16)0.0720 (15)0.0004 (13)0.0168 (11)0.0030 (14)
O50.0559 (14)0.0745 (18)0.0844 (18)0.0002 (14)0.0039 (12)0.0231 (17)
N10.0468 (14)0.0476 (16)0.0459 (14)0.0087 (12)0.0194 (12)0.0030 (13)
C10.0493 (17)0.0382 (18)0.0488 (18)0.0030 (14)0.0188 (14)0.0032 (15)
C20.080 (2)0.043 (2)0.068 (2)0.0177 (18)0.0362 (19)0.0118 (18)
C30.0414 (15)0.051 (2)0.0494 (18)0.0076 (16)0.0135 (13)0.0005 (16)
C40.088 (2)0.053 (2)0.066 (2)0.003 (2)0.0270 (19)0.005 (2)
C50.118 (3)0.067 (3)0.065 (2)0.027 (3)0.022 (2)0.013 (2)
C60.098 (3)0.110 (4)0.072 (3)0.032 (3)0.043 (3)0.001 (3)
C70.092 (3)0.101 (4)0.109 (3)0.004 (3)0.064 (3)0.000 (3)
C80.064 (2)0.064 (2)0.076 (3)0.0068 (19)0.0300 (19)0.008 (2)
C90.0498 (18)0.0416 (17)0.0467 (17)0.0004 (16)0.0131 (14)0.0059 (16)
C100.077 (2)0.0432 (19)0.056 (2)0.0037 (17)0.0298 (17)0.0018 (16)
C110.0611 (19)0.062 (2)0.071 (2)0.010 (2)0.0308 (17)0.004 (2)
C120.057 (2)0.045 (2)0.066 (2)0.0055 (17)0.0220 (18)0.0045 (18)
O1A0.0602 (15)0.104 (2)0.088 (2)0.0266 (16)0.0275 (14)0.0459 (19)
O2A0.0461 (12)0.0834 (18)0.0610 (13)0.0171 (12)0.0241 (10)0.0254 (13)
O3A0.0544 (13)0.0811 (18)0.0809 (16)0.0165 (13)0.0347 (12)0.0239 (15)
O4A0.100 (2)0.129 (3)0.137 (3)0.019 (2)0.045 (2)0.071 (3)
O5A0.0670 (17)0.125 (3)0.121 (3)0.0130 (19)0.0171 (17)0.058 (2)
N1A0.0476 (16)0.077 (2)0.0663 (17)0.0042 (16)0.0236 (14)0.0057 (17)
C1A0.0526 (19)0.063 (2)0.0530 (18)0.0064 (18)0.0210 (15)0.004 (2)
C2A0.064 (2)0.137 (4)0.087 (3)0.024 (3)0.044 (2)0.057 (3)
C3A0.0461 (17)0.080 (3)0.0450 (18)0.0014 (19)0.0186 (15)0.0142 (19)
C4A0.073 (3)0.081 (3)0.066 (2)0.005 (2)0.031 (2)0.006 (2)
C5A0.061 (2)0.136 (5)0.064 (2)0.028 (3)0.0094 (19)0.004 (3)
C6A0.051 (2)0.129 (5)0.086 (3)0.019 (3)0.015 (2)0.024 (4)
C7A0.084 (3)0.081 (3)0.101 (3)0.018 (3)0.039 (3)0.012 (3)
C8A0.065 (2)0.082 (3)0.065 (2)0.010 (2)0.0181 (18)0.001 (2)
C9A0.063 (2)0.099 (4)0.067 (2)0.008 (2)0.0224 (19)0.014 (3)
C10A0.056 (2)0.123 (4)0.072 (3)0.004 (3)0.0203 (18)0.014 (3)
C11A0.056 (2)0.085 (3)0.091 (3)0.010 (2)0.0193 (18)0.006 (3)
C12A0.056 (2)0.077 (3)0.073 (3)0.000 (2)0.0241 (19)0.010 (2)
Geometric parameters (Å, º) top
O1—C11.179 (4)O1A—C1A1.171 (4)
O2—C11.312 (4)O2A—C1A1.300 (4)
O2—C21.464 (4)O2A—C2A1.477 (4)
O3—C11.379 (4)O3A—C1A1.374 (4)
O3—N11.391 (3)O3A—N1A1.376 (4)
O4—C91.193 (4)O4A—C9A1.205 (6)
O5—C121.202 (4)O5A—C12A1.182 (5)
N1—C121.376 (4)N1A—C12A1.361 (5)
N1—C91.383 (4)N1A—C9A1.379 (5)
C2—C31.484 (5)C2A—C3A1.477 (5)
C2—H2A0.9700C2A—H2AA0.9700
C2—H2B0.9700C2A—H2AB0.9700
C3—C81.355 (5)C3A—C8A1.368 (6)
C3—C41.375 (5)C3A—C4A1.378 (5)
C4—C51.399 (6)C4A—C5A1.407 (6)
C4—H4A0.9300C4A—H4AA0.9300
C5—C61.338 (7)C5A—C6A1.349 (8)
C5—H5A0.9300C5A—H5AA0.9300
C6—C71.350 (8)C6A—C7A1.364 (7)
C6—H6A0.9300C6A—H6AA0.9300
C7—C81.371 (6)C7A—C8A1.359 (6)
C7—H7A0.9300C7A—H7AA0.9300
C8—H8A0.9300C8A—H8AA0.9300
C9—C101.493 (5)C9A—C10A1.495 (6)
C10—C111.524 (5)C10A—C11A1.526 (7)
C10—H10A0.9700C10A—H10C0.9700
C10—H10B0.9700C10A—H10D0.9700
C11—C121.495 (5)C11A—C12A1.493 (6)
C11—H11A0.9700C11A—H11C0.9700
C11—H11B0.9700C11A—H11D0.9700
C1—O2—C2113.6 (2)C1A—O2A—C2A113.9 (3)
C1—O3—N1112.0 (2)C1A—O3A—N1A111.3 (3)
C12—N1—C9117.2 (3)C12A—N1A—O3A121.9 (3)
C12—N1—O3121.0 (3)C12A—N1A—C9A117.0 (3)
C9—N1—O3121.6 (2)O3A—N1A—C9A120.8 (3)
O1—C1—O2130.4 (3)O1A—C1A—O2A130.4 (3)
O1—C1—O3124.9 (3)O1A—C1A—O3A123.3 (3)
O2—C1—O3104.8 (3)O2A—C1A—O3A106.2 (3)
O2—C2—C3108.8 (3)O2A—C2A—C3A109.0 (3)
O2—C2—H2A109.9O2A—C2A—H2AA109.9
C3—C2—H2A109.9C3A—C2A—H2AA109.9
O2—C2—H2B109.9O2A—C2A—H2AB109.9
C3—C2—H2B109.9C3A—C2A—H2AB109.9
H2A—C2—H2B108.3H2AA—C2A—H2AB108.3
C8—C3—C4118.7 (3)C8A—C3A—C4A118.3 (3)
C8—C3—C2121.8 (3)C8A—C3A—C2A120.6 (4)
C4—C3—C2119.4 (3)C4A—C3A—C2A121.0 (4)
C3—C4—C5118.7 (4)C3A—C4A—C5A119.8 (4)
C3—C4—H4A120.7C3A—C4A—H4AA120.1
C5—C4—H4A120.7C5A—C4A—H4AA120.1
C6—C5—C4121.3 (4)C6A—C5A—C4A119.8 (4)
C6—C5—H5A119.3C6A—C5A—H5AA120.1
C4—C5—H5A119.3C4A—C5A—H5AA120.1
C5—C6—C7119.5 (4)C5A—C6A—C7A120.1 (4)
C5—C6—H6A120.2C5A—C6A—H6AA119.9
C7—C6—H6A120.2C7A—C6A—H6AA119.9
C6—C7—C8120.2 (5)C8A—C7A—C6A120.3 (5)
C6—C7—H7A119.9C8A—C7A—H7AA119.9
C8—C7—H7A119.9C6A—C7A—H7AA119.9
C3—C8—C7121.4 (4)C7A—C8A—C3A121.6 (4)
C3—C8—H8A119.3C7A—C8A—H8AA119.2
C7—C8—H8A119.3C3A—C8A—H8AA119.2
O4—C9—N1124.6 (3)O4A—C9A—N1A123.9 (4)
O4—C9—C10130.1 (3)O4A—C9A—C10A130.6 (4)
N1—C9—C10105.3 (3)N1A—C9A—C10A105.5 (4)
C9—C10—C11105.3 (3)C9A—C10A—C11A105.6 (3)
C9—C10—H10A110.7C9A—C10A—H10C110.6
C11—C10—H10A110.7C11A—C10A—H10C110.6
C9—C10—H10B110.7C9A—C10A—H10D110.6
C11—C10—H10B110.7C11A—C10A—H10D110.6
H10A—C10—H10B108.8H10C—C10A—H10D108.8
C12—C11—C10106.6 (3)C12A—C11A—C10A105.8 (4)
C12—C11—H11A110.4C12A—C11A—H11C110.6
C10—C11—H11A110.4C10A—C11A—H11C110.6
C12—C11—H11B110.4C12A—C11A—H11D110.6
C10—C11—H11B110.4C10A—C11A—H11D110.6
H11A—C11—H11B108.6H11C—C11A—H11D108.7
O5—C12—N1124.4 (3)O5A—C12A—N1A123.9 (4)
O5—C12—C11130.8 (3)O5A—C12A—C11A130.1 (4)
N1—C12—C11104.7 (3)N1A—C12A—C11A105.9 (3)
C1—O3—N1—C12100.4 (3)C1A—O3A—N1A—C12A88.0 (4)
C1—O3—N1—C983.5 (3)C1A—O3A—N1A—C9A97.8 (4)
C2—O2—C1—O13.5 (5)C2A—O2A—C1A—O1A5.6 (6)
C2—O2—C1—O3176.4 (2)C2A—O2A—C1A—O3A178.3 (4)
N1—O3—C1—O12.2 (4)N1A—O3A—C1A—O1A8.3 (5)
N1—O3—C1—O2177.7 (2)N1A—O3A—C1A—O2A175.2 (3)
C1—O2—C2—C3174.0 (3)C1A—O2A—C2A—C3A173.9 (4)
O2—C2—C3—C848.6 (4)O2A—C2A—C3A—C8A88.5 (4)
O2—C2—C3—C4134.7 (3)O2A—C2A—C3A—C4A95.3 (5)
C8—C3—C4—C53.0 (5)C8A—C3A—C4A—C5A1.6 (5)
C2—C3—C4—C5173.8 (3)C2A—C3A—C4A—C5A177.8 (3)
C3—C4—C5—C62.9 (6)C3A—C4A—C5A—C6A2.2 (6)
C4—C5—C6—C72.6 (7)C4A—C5A—C6A—C7A1.8 (7)
C5—C6—C7—C82.4 (7)C5A—C6A—C7A—C8A1.0 (7)
C4—C3—C8—C73.0 (6)C6A—C7A—C8A—C3A0.4 (6)
C2—C3—C8—C7173.8 (4)C4A—C3A—C8A—C7A0.7 (5)
C6—C7—C8—C32.6 (7)C2A—C3A—C8A—C7A177.0 (4)
C12—N1—C9—O4175.3 (3)C12A—N1A—C9A—O4A176.7 (5)
O3—N1—C9—O48.4 (5)O3A—N1A—C9A—O4A2.2 (6)
C12—N1—C9—C106.2 (4)C12A—N1A—C9A—C10A4.1 (5)
O3—N1—C9—C10170.1 (3)O3A—N1A—C9A—C10A178.6 (3)
O4—C9—C10—C11172.9 (3)O4A—C9A—C10A—C11A176.5 (5)
N1—C9—C10—C118.8 (4)N1A—C9A—C10A—C11A4.4 (5)
C9—C10—C11—C128.6 (4)C9A—C10A—C11A—C12A3.4 (5)
C9—N1—C12—O5178.3 (3)O3A—N1A—C12A—O5A3.4 (6)
O3—N1—C12—O55.4 (5)C9A—N1A—C12A—O5A177.8 (5)
C9—N1—C12—C110.7 (4)O3A—N1A—C12A—C11A176.3 (4)
O3—N1—C12—C11175.7 (3)C9A—N1A—C12A—C11A1.9 (5)
C10—C11—C12—O5176.0 (4)C10A—C11A—C12A—O5A179.2 (5)
C10—C11—C12—N15.1 (4)C10A—C11A—C12A—N1A1.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.972.563.251 (4)128
C8A—H8AA···O4ii0.932.473.398 (5)172
C10—H10A···O1Aii0.972.483.057 (5)118
C2A—H2AA···O1iii0.972.493.417 (5)161
C6A—H6AA···O5Aiv0.932.603.354 (6)139
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z; (iii) x+1, y1/2, z; (iv) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H11NO5
Mr249.22
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.9348 (6), 6.0151 (3), 16.5398 (9)
β (°) 106.170 (5)
V3)1235.96 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.50 × 0.37
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.939, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
7601, 2648, 1646
Rint0.029
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 0.90
No. of reflections2648
No. of parameters325
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.972.563.251 (4)128
C8A—H8AA···O4ii0.932.473.398 (5)172
C10—H10A···O1Aii0.972.483.057 (5)118
C2A—H2AA···O1iii0.972.493.417 (5)161
C6A—H6AA···O5Aiv0.932.603.354 (6)139
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z; (iii) x+1, y1/2, z; (iv) x+2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Key Foundation of Science and Technology of Fujian Province, China (grant No. 2002H011), for supporting this work, and Mr R.-B. Huang for technical assistance.

References

First citationAlenka, P. (1982). Can. J. Chem. 60, 976–980.  Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, T.-J., Fang, H., Cheng, F., Tang, G. & Zhao, Y.-F. (2006). Acta Cryst. E62, o5784–o5785.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds