organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-methyl-3-phenyl­sulfonyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 20 May 2008; accepted 25 May 2008; online 7 June 2008)

The title compound, C15H11ClO3S, was prepared by the oxidation of 5-chloro-2-methyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. There are two symmetry-independent mol­ecules in the asymmetric unit. The dihedral angles formed by the phenyl ring and the plane of the benzofuran system are 77.80 (8) and 78.34 (8)°. The crystal structure is stabilized by aromatic ππ stacking inter­actions between the furan ring and the benzene rings of neighbouring benzofuran fragments from two symmetry-independent mol­ecules; the centroid–centroid distances within the stacks are 3.689 (4), 3.702 (4), 3.825 (4) and 3.826 (4) Å. Additionally, the stacked mol­ecules exhibit inter- and intra­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o850.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11ClO3S

  • Mr = 306.76

  • Triclinic, [P \overline 1]

  • a = 7.4029 (7) Å

  • b = 9.2669 (9) Å

  • c = 20.889 (2) Å

  • α = 100.953 (2)°

  • β = 95.626 (2)°

  • γ = 104.212 (2)°

  • V = 1348.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 173 (2) K

  • 0.50 × 0.50 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.795, Tmax = 0.870

  • 9232 measured reflections

  • 4555 independent reflections

  • 4119 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 1.16

  • 4555 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O2 0.98 2.44 3.153 (4) 130
C14—H14⋯O3i 0.95 2.51 3.429 (4) 164
C29—H29⋯O5ii 0.95 2.51 3.453 (4) 170
C30—H30A⋯O6 0.98 2.42 3.141 (4) 130
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our communications on the synthesis and structure of 2-methyl-3-phenylsulfonyl-1-benzofuran analogues, viz. 5-bromo-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a) and 2,5-dimethyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008b). Herein we report the crystal and molecular structure of the title compound, 5-chloro-2-methyl-3-phenylsulfonyl-1-benzofuran C15H11ClO3S, (I), (Fig. 1).

The benzofuran unit is essentially planar, with a max deviation of 0.015 (2) Å for unit A, and 0.020 (2) Å for unit B, respectively, from the least-squares plane defined by the nine constituent atoms. In the title compound, the dihedral angles formed by the benzofuran fragment and the plane of the phenyl ring are 77.80 (8)° in unit A and 78.34 (8)° in unit B, respectively. The crystal packing (Fig. 2) is stabilized by four different ππ interactions within each stack of molecules; one between the furan ring (Cg1) and an adjacent benzene ring (Cg2i) [distance 3.702 (4) Å], a second between the furan ring (Cg1) and an adjacent benzene ring (Cg2ii) [distance 3.826 (4) Å], a third between the furan ring (Cg3) and an adjacent benzene ring (Cg4iii) [distance 3.689 (4) Å], a fourth between the furan ring (Cg3) and an adjacent benzene ring (Cg4iv) [distance 3.825 (4) Å], (Cg1, Cg2, Cg3, and Cg4 are the centroids of the O1/C8/C1/C2/C7 furan ring, the C2/C3/C4/C5/C6/C7 benzene ring, the O4/C23/C16/C17/C22 furan ring, the C17/C18/C19/C20/C21/C22 benzene ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by inter- and intramolecular C—H···O hydrogen bonds (Fig. 3 and Table; symmetry codes as in Fig. 3).

Related literature top

For the crystal structures of similar 2-methyl-3-phenylsulfonyl-1-benzofuran derivatives, see: Choi et al. (2008a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (471 mg, 2.1 mmol) was added in small portions to a stirred solution of 5-chloro-2-methyl-3-phenylsulfanyl-1-benzofuran (275 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethylacetate, 2:1 v/v) to afford the I as a colorless solid [yield 81%, m.p. 468–469 K; Rf = 0.61 (hexane–ethylacetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the I in chloroform at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.80 (s, 3H), 7.28 (d, J = 2.16 Hz, 1H), 7.33 (s, 1H), 7.51–7.55 (m, 2H), 7.58–7.61 (m, 1H), 7.88 (d, J = 2.20 Hz, 1H), 7.98–8.04 (m, 2H); EI-MS 308 [M+2], 306 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The ππ interactions (dotted lines) in the title compound. Cg denotes the ring centroids. Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z; (iv) -x, -y, -z.
[Figure 3] Fig. 3. C—H···O interactions (dotted lines) in the title compound. Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z.
5-Chloro-2-methyl-3-phenylsulfonyl-1-benzofuran top
Crystal data top
C15H11ClO3SZ = 4
Mr = 306.76F(000) = 632
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Melting point = 468–469 K
a = 7.4029 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2669 (9) ÅCell parameters from 7490 reflections
c = 20.889 (2) Åθ = 2.3–28.2°
α = 100.953 (2)°µ = 0.44 mm1
β = 95.626 (2)°T = 173 K
γ = 104.212 (2)°Block, colourless
V = 1348.0 (2) Å30.50 × 0.50 × 0.30 mm
Data collection top
Bruker SMART CCD
diffractometer
4555 independent reflections
Radiation source: fine-focus sealed tube4119 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.0°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1111
Tmin = 0.795, Tmax = 0.870l = 2424
9232 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.6847P]
where P = (Fo2 + 2Fc2)/3
4555 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C15H11ClO3Sγ = 104.212 (2)°
Mr = 306.76V = 1348.0 (2) Å3
Triclinic, P1Z = 4
a = 7.4029 (7) ÅMo Kα radiation
b = 9.2669 (9) ŵ = 0.44 mm1
c = 20.889 (2) ÅT = 173 K
α = 100.953 (2)°0.50 × 0.50 × 0.30 mm
β = 95.626 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4555 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4119 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.870Rint = 0.036
9232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.16Δρmax = 0.36 e Å3
4555 reflectionsΔρmin = 0.43 e Å3
363 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.94027 (12)0.83729 (9)0.68782 (4)0.0390 (2)
S10.89392 (10)0.73758 (8)0.38915 (3)0.02487 (18)
O10.6676 (3)0.3633 (2)0.44767 (10)0.0285 (4)
O20.9367 (3)0.6705 (3)0.32655 (10)0.0344 (5)
O31.0381 (3)0.8528 (2)0.43567 (10)0.0327 (5)
C10.8078 (4)0.5920 (3)0.42946 (13)0.0235 (6)
C20.8110 (4)0.6091 (3)0.50012 (13)0.0219 (6)
C30.8793 (4)0.7294 (3)0.55589 (13)0.0242 (6)
H30.93890.83020.55240.029*
C40.8551 (4)0.6929 (3)0.61626 (14)0.0265 (6)
C50.7692 (4)0.5459 (4)0.62322 (14)0.0297 (6)
H50.75750.52710.66600.036*
C60.7012 (4)0.4275 (3)0.56827 (15)0.0303 (7)
H60.64210.32660.57180.036*
C70.7242 (4)0.4643 (3)0.50790 (14)0.0242 (6)
C80.7201 (4)0.4438 (3)0.40081 (14)0.0262 (6)
C90.7018 (4)0.8137 (3)0.37439 (14)0.0246 (6)
C100.5757 (4)0.7514 (4)0.31622 (15)0.0311 (7)
H100.59410.67050.28430.037*
C110.4221 (5)0.8097 (4)0.30559 (18)0.0406 (8)
H110.33510.76940.26590.049*
C120.3958 (5)0.9256 (4)0.3524 (2)0.0445 (9)
H120.28970.96410.34490.053*
C130.5210 (5)0.9865 (4)0.40995 (19)0.0421 (8)
H130.50151.06720.44170.051*
C140.6760 (4)0.9309 (3)0.42202 (16)0.0316 (7)
H140.76240.97190.46190.038*
C150.6662 (5)0.3533 (4)0.33182 (15)0.0352 (7)
H15A0.71520.41740.30170.053*
H15B0.52850.31720.32120.053*
H15C0.71930.26550.32700.053*
Cl20.24348 (13)0.14348 (9)0.18646 (4)0.0400 (2)
S20.49179 (10)0.35480 (8)0.11049 (3)0.02486 (18)
O40.2303 (3)0.0834 (2)0.05447 (10)0.0303 (5)
O50.5910 (3)0.4231 (2)0.06317 (10)0.0315 (5)
O60.5927 (3)0.3559 (3)0.17302 (10)0.0339 (5)
C160.3752 (4)0.1665 (3)0.07152 (14)0.0236 (6)
C170.3089 (4)0.1109 (3)0.00122 (13)0.0225 (6)
C180.3154 (4)0.1733 (3)0.05452 (13)0.0241 (6)
H180.37160.27870.05150.029*
C190.2356 (4)0.0736 (3)0.11451 (14)0.0274 (6)
C200.1522 (4)0.0821 (3)0.12108 (15)0.0309 (7)
H200.10120.14560.16350.037*
C210.1440 (4)0.1436 (3)0.06597 (15)0.0315 (7)
H210.08770.24890.06900.038*
C220.2222 (4)0.0437 (3)0.00587 (14)0.0244 (6)
C230.3230 (4)0.0464 (3)0.10065 (14)0.0276 (6)
C240.3087 (4)0.4413 (3)0.12603 (14)0.0254 (6)
C250.2273 (4)0.4267 (3)0.18244 (15)0.0317 (7)
H250.27290.37420.21260.038*
C260.0798 (5)0.4891 (4)0.19426 (17)0.0408 (8)
H260.02280.47970.23260.049*
C270.0152 (5)0.5653 (4)0.15001 (19)0.0447 (9)
H270.08660.60830.15820.054*
C280.0965 (5)0.5797 (4)0.0943 (2)0.0442 (9)
H280.05080.63280.06450.053*
C290.2448 (4)0.5171 (3)0.08137 (17)0.0348 (7)
H290.30100.52620.04280.042*
C300.3420 (5)0.0266 (4)0.16940 (16)0.0396 (8)
H30A0.42370.12050.19840.059*
H30B0.39750.05830.17200.059*
H30C0.21730.00440.18330.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0524 (5)0.0418 (5)0.0215 (4)0.0176 (4)0.0002 (3)0.0001 (3)
S10.0231 (4)0.0292 (4)0.0215 (4)0.0035 (3)0.0058 (3)0.0071 (3)
O10.0314 (11)0.0232 (10)0.0290 (11)0.0051 (9)0.0025 (9)0.0052 (8)
O20.0362 (12)0.0446 (13)0.0254 (11)0.0126 (10)0.0133 (9)0.0088 (9)
O30.0260 (11)0.0348 (12)0.0316 (12)0.0031 (9)0.0010 (9)0.0100 (9)
C10.0207 (14)0.0289 (15)0.0217 (14)0.0066 (11)0.0044 (11)0.0070 (11)
C20.0173 (13)0.0282 (14)0.0217 (14)0.0063 (11)0.0039 (11)0.0084 (11)
C30.0222 (14)0.0257 (14)0.0239 (14)0.0057 (11)0.0023 (11)0.0054 (11)
C40.0273 (15)0.0319 (16)0.0218 (14)0.0123 (12)0.0035 (12)0.0040 (12)
C50.0320 (16)0.0381 (17)0.0239 (15)0.0135 (13)0.0068 (13)0.0125 (13)
C60.0304 (16)0.0303 (16)0.0351 (17)0.0089 (13)0.0093 (13)0.0160 (13)
C70.0221 (14)0.0243 (14)0.0259 (15)0.0074 (11)0.0003 (11)0.0051 (11)
C80.0241 (14)0.0311 (15)0.0242 (15)0.0091 (12)0.0036 (12)0.0062 (12)
C90.0252 (14)0.0237 (14)0.0234 (14)0.0007 (11)0.0057 (12)0.0085 (11)
C100.0324 (16)0.0324 (16)0.0271 (16)0.0032 (13)0.0025 (13)0.0116 (13)
C110.0331 (17)0.0439 (19)0.046 (2)0.0026 (15)0.0019 (15)0.0262 (16)
C120.0329 (18)0.0394 (19)0.073 (3)0.0131 (15)0.0128 (18)0.0329 (19)
C130.043 (2)0.0264 (16)0.062 (2)0.0106 (15)0.0213 (18)0.0140 (16)
C140.0316 (16)0.0244 (15)0.0336 (17)0.0012 (12)0.0078 (13)0.0039 (12)
C150.0387 (18)0.0331 (17)0.0288 (16)0.0081 (14)0.0004 (14)0.0004 (13)
Cl20.0602 (5)0.0376 (4)0.0227 (4)0.0147 (4)0.0028 (4)0.0079 (3)
S20.0220 (4)0.0284 (4)0.0208 (4)0.0028 (3)0.0013 (3)0.0037 (3)
O40.0357 (12)0.0243 (10)0.0332 (11)0.0074 (9)0.0082 (9)0.0119 (9)
O50.0284 (11)0.0342 (12)0.0263 (11)0.0016 (9)0.0059 (9)0.0053 (9)
O60.0291 (11)0.0441 (13)0.0258 (11)0.0092 (10)0.0025 (9)0.0057 (9)
C160.0195 (14)0.0266 (14)0.0247 (14)0.0060 (11)0.0040 (11)0.0054 (11)
C170.0191 (13)0.0224 (14)0.0255 (14)0.0060 (11)0.0042 (11)0.0033 (11)
C180.0246 (14)0.0217 (14)0.0245 (14)0.0040 (11)0.0029 (12)0.0051 (11)
C190.0316 (16)0.0287 (15)0.0229 (15)0.0099 (12)0.0046 (12)0.0057 (12)
C200.0308 (16)0.0271 (15)0.0286 (16)0.0059 (13)0.0029 (13)0.0023 (12)
C210.0296 (16)0.0244 (15)0.0378 (17)0.0057 (12)0.0035 (13)0.0031 (13)
C220.0233 (14)0.0239 (14)0.0278 (15)0.0075 (11)0.0060 (12)0.0074 (12)
C230.0282 (15)0.0306 (16)0.0282 (15)0.0125 (12)0.0084 (12)0.0085 (12)
C240.0204 (14)0.0215 (14)0.0290 (15)0.0004 (11)0.0008 (12)0.0018 (11)
C250.0331 (16)0.0329 (16)0.0251 (15)0.0065 (13)0.0018 (13)0.0011 (12)
C260.0364 (18)0.0406 (19)0.0387 (19)0.0082 (15)0.0091 (15)0.0068 (15)
C270.0289 (17)0.0283 (17)0.068 (3)0.0069 (14)0.0010 (17)0.0062 (16)
C280.0361 (18)0.0215 (16)0.072 (3)0.0024 (14)0.0053 (18)0.0160 (16)
C290.0304 (16)0.0282 (16)0.0431 (19)0.0012 (13)0.0009 (14)0.0155 (14)
C300.054 (2)0.0414 (19)0.0314 (17)0.0169 (16)0.0119 (15)0.0183 (14)
Geometric parameters (Å, º) top
Cl1—C41.750 (3)Cl2—C191.746 (3)
S1—O31.437 (2)S2—O61.437 (2)
S1—O21.437 (2)S2—O51.438 (2)
S1—C11.746 (3)S2—C161.742 (3)
S1—C91.762 (3)S2—C241.762 (3)
O1—C81.369 (3)O4—C231.368 (4)
O1—C71.375 (3)O4—C221.378 (3)
C1—C81.357 (4)C16—C231.361 (4)
C1—C21.451 (4)C16—C171.452 (4)
C2—C71.386 (4)C17—C221.392 (4)
C2—C31.404 (4)C17—C181.395 (4)
C3—C41.383 (4)C18—C191.386 (4)
C3—H30.9500C18—H180.9500
C4—C51.396 (4)C19—C201.398 (4)
C5—C61.383 (4)C20—C211.378 (4)
C5—H50.9500C20—H200.9500
C6—C71.383 (4)C21—C221.386 (4)
C6—H60.9500C21—H210.9500
C8—C151.484 (4)C23—C301.480 (4)
C9—C101.388 (4)C24—C291.383 (4)
C9—C141.391 (4)C24—C251.389 (4)
C10—C111.391 (4)C25—C261.377 (4)
C10—H100.9500C25—H250.9500
C11—C121.375 (5)C26—C271.382 (5)
C11—H110.9500C26—H260.9500
C12—C131.374 (5)C27—C281.374 (5)
C12—H120.9500C27—H270.9500
C13—C141.389 (5)C28—C291.388 (5)
C13—H130.9500C28—H280.9500
C14—H140.9500C29—H290.9500
C15—H15A0.9800C30—H30A0.9800
C15—H15B0.9800C30—H30B0.9800
C15—H15C0.9800C30—H30C0.9800
O3—S1—O2119.89 (13)O6—S2—O5119.93 (13)
O3—S1—C1106.92 (13)O6—S2—C16108.60 (13)
O2—S1—C1108.61 (13)O5—S2—C16107.16 (13)
O3—S1—C9107.87 (13)O6—S2—C24107.79 (13)
O2—S1—C9108.20 (13)O5—S2—C24108.08 (13)
C1—S1—C9104.28 (13)C16—S2—C24104.18 (13)
C8—O1—C7106.9 (2)C23—O4—C22106.9 (2)
C8—C1—C2107.3 (2)C23—C16—C17107.4 (2)
C8—C1—S1126.7 (2)C23—C16—S2127.1 (2)
C2—C1—S1126.0 (2)C17—C16—S2125.5 (2)
C7—C2—C3119.6 (2)C22—C17—C18119.4 (3)
C7—C2—C1104.7 (2)C22—C17—C16104.4 (2)
C3—C2—C1135.7 (3)C18—C17—C16136.2 (3)
C4—C3—C2116.2 (3)C19—C18—C17116.5 (3)
C4—C3—H3121.9C19—C18—H18121.7
C2—C3—H3121.9C17—C18—H18121.7
C3—C4—C5123.4 (3)C18—C19—C20123.5 (3)
C3—C4—Cl1118.5 (2)C18—C19—Cl2118.9 (2)
C5—C4—Cl1118.1 (2)C20—C19—Cl2117.6 (2)
C6—C5—C4120.4 (3)C21—C20—C19120.0 (3)
C6—C5—H5119.8C21—C20—H20120.0
C4—C5—H5119.8C19—C20—H20120.0
C5—C6—C7116.2 (3)C20—C21—C22116.5 (3)
C5—C6—H6121.9C20—C21—H21121.7
C7—C6—H6121.9C22—C21—H21121.7
O1—C7—C6125.2 (3)O4—C22—C21125.3 (3)
O1—C7—C2110.6 (2)O4—C22—C17110.7 (2)
C6—C7—C2124.2 (3)C21—C22—C17124.0 (3)
C1—C8—O1110.5 (2)C16—C23—O4110.6 (2)
C1—C8—C15134.8 (3)C16—C23—C30134.7 (3)
O1—C8—C15114.7 (3)O4—C23—C30114.7 (3)
C10—C9—C14121.5 (3)C29—C24—C25121.4 (3)
C10—C9—S1119.0 (2)C29—C24—S2120.0 (2)
C14—C9—S1119.5 (2)C25—C24—S2118.5 (2)
C9—C10—C11118.7 (3)C26—C25—C24119.4 (3)
C9—C10—H10120.7C26—C25—H25120.3
C11—C10—H10120.7C24—C25—H25120.3
C12—C11—C10120.2 (3)C25—C26—C27119.6 (3)
C12—C11—H11119.9C25—C26—H26120.2
C10—C11—H11119.9C27—C26—H26120.2
C13—C12—C11120.8 (3)C28—C27—C26120.8 (3)
C13—C12—H12119.6C28—C27—H27119.6
C11—C12—H12119.6C26—C27—H27119.6
C12—C13—C14120.5 (3)C27—C28—C29120.5 (3)
C12—C13—H13119.8C27—C28—H28119.7
C14—C13—H13119.8C29—C28—H28119.7
C13—C14—C9118.4 (3)C24—C29—C28118.3 (3)
C13—C14—H14120.8C24—C29—H29120.9
C9—C14—H14120.8C28—C29—H29120.9
C8—C15—H15A109.5C23—C30—H30A109.5
C8—C15—H15B109.5C23—C30—H30B109.5
H15A—C15—H15B109.5H30A—C30—H30B109.5
C8—C15—H15C109.5C23—C30—H30C109.5
H15A—C15—H15C109.5H30A—C30—H30C109.5
H15B—C15—H15C109.5H30B—C30—H30C109.5
O3—S1—C1—C8156.6 (2)O6—S2—C16—C2323.3 (3)
O2—S1—C1—C825.9 (3)O5—S2—C16—C23154.3 (2)
C9—S1—C1—C889.3 (3)C24—S2—C16—C2391.3 (3)
O3—S1—C1—C225.9 (3)O6—S2—C16—C17159.3 (2)
O2—S1—C1—C2156.6 (2)O5—S2—C16—C1728.4 (3)
C9—S1—C1—C288.2 (3)C24—S2—C16—C1786.0 (2)
C8—C1—C2—C70.8 (3)C23—C16—C17—C220.9 (3)
S1—C1—C2—C7178.7 (2)S2—C16—C17—C22178.7 (2)
C8—C1—C2—C3179.8 (3)C23—C16—C17—C18179.9 (3)
S1—C1—C2—C32.3 (5)S2—C16—C17—C182.1 (5)
C7—C2—C3—C40.4 (4)C22—C17—C18—C191.0 (4)
C1—C2—C3—C4178.5 (3)C16—C17—C18—C19178.1 (3)
C2—C3—C4—C50.4 (4)C17—C18—C19—C200.2 (4)
C2—C3—C4—Cl1179.1 (2)C17—C18—C19—Cl2178.6 (2)
C3—C4—C5—C60.7 (4)C18—C19—C20—C210.9 (5)
Cl1—C4—C5—C6179.4 (2)Cl2—C19—C20—C21179.3 (2)
C4—C5—C6—C70.1 (4)C19—C20—C21—C220.3 (4)
C8—O1—C7—C6178.5 (3)C23—O4—C22—C21178.1 (3)
C8—O1—C7—C20.5 (3)C23—O4—C22—C170.2 (3)
C5—C6—C7—O1179.6 (3)C20—C21—C22—O4179.1 (3)
C5—C6—C7—C20.7 (4)C20—C21—C22—C171.0 (4)
C3—C2—C7—O1180.0 (2)C18—C17—C22—O4180.0 (2)
C1—C2—C7—O10.8 (3)C16—C17—C22—O40.6 (3)
C3—C2—C7—C61.0 (4)C18—C17—C22—C211.7 (4)
C1—C2—C7—C6178.2 (3)C16—C17—C22—C21177.7 (3)
C2—C1—C8—O10.5 (3)C17—C16—C23—O40.8 (3)
S1—C1—C8—O1178.42 (19)S2—C16—C23—O4178.58 (19)
C2—C1—C8—C15177.8 (3)C17—C16—C23—C30178.2 (3)
S1—C1—C8—C150.1 (5)S2—C16—C23—C300.4 (5)
C7—O1—C8—C10.0 (3)C22—O4—C23—C160.4 (3)
C7—O1—C8—C15178.6 (2)C22—O4—C23—C30178.8 (2)
O3—S1—C9—C10157.2 (2)O6—S2—C24—C29150.9 (2)
O2—S1—C9—C1026.1 (3)O5—S2—C24—C2919.9 (3)
C1—S1—C9—C1089.4 (2)C16—S2—C24—C2993.8 (3)
O3—S1—C9—C1425.0 (3)O6—S2—C24—C2531.2 (3)
O2—S1—C9—C14156.0 (2)O5—S2—C24—C25162.2 (2)
C1—S1—C9—C1488.5 (2)C16—S2—C24—C2584.0 (2)
C14—C9—C10—C110.8 (4)C29—C24—C25—C260.0 (4)
S1—C9—C10—C11178.6 (2)S2—C24—C25—C26177.8 (2)
C9—C10—C11—C120.7 (4)C24—C25—C26—C270.1 (5)
C10—C11—C12—C130.6 (5)C25—C26—C27—C280.0 (5)
C11—C12—C13—C140.5 (5)C26—C27—C28—C290.3 (5)
C12—C13—C14—C90.6 (5)C25—C24—C29—C280.3 (4)
C10—C9—C14—C130.7 (4)S2—C24—C29—C28178.0 (2)
S1—C9—C14—C13178.5 (2)C27—C28—C29—C240.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O20.982.443.153 (4)130
C14—H14···O3i0.952.513.429 (4)164
C29—H29···O5ii0.952.513.453 (4)170
C30—H30A···O60.982.423.141 (4)130
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H11ClO3S
Mr306.76
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.4029 (7), 9.2669 (9), 20.889 (2)
α, β, γ (°)100.953 (2), 95.626 (2), 104.212 (2)
V3)1348.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.50 × 0.50 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.795, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
9232, 4555, 4119
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 1.16
No. of reflections4555
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.43

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O20.982.443.153 (4)129.5
C14—H14···O3i0.952.513.429 (4)163.7
C29—H29···O5ii0.952.513.453 (4)169.8
C30—H30A···O60.982.423.141 (4)130.4
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds