metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,5-di­hydroxy­benzoato-κO)bis­­(1,10-phenathroline-κ2N,N′)cadmium(II) 1.25-hydrate

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 26 May 2008; accepted 15 June 2008; online 19 June 2008)

In the crystal structure of the title compound, [Cd(C7H5O4)2(C12H8N2)2]·1.25H2O, the Cd2+ cation is coordinated by two phenanthroline (phen) mol­ecules and two 2,5-dihydroxy­benzoate (dhba) anions in a distorted octa­hedral geometry. The centroid–centroid distances of 3.809 (2) and 3.680 (2) Å between nearly parallel pyridine rings of the phen ligands and the benzene rings of dhba anions indicate that the dhba anions are involved in ππ stacking in the crystal structure. The face-to-face separation of 3.35 (3) Å between parallel phen ring systems also suggests ππ stacking between adjacent complex mol­ecules. The crystal structure contains extensive O—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For general background, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Li et al. (2005[Li, H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m761-m763.]). For a related structure, see: Huang et al. (2006[Huang, X., Xiao, L.-P. & Xu, D.-J. (2006). Acta Cryst. E62, m2246-m2248.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C7H5O4)2(C12H8N2)2]·1.25H2O

  • Mr = 801.55

  • Monoclinic, P 21 /n

  • a = 10.8992 (18) Å

  • b = 27.300 (2) Å

  • c = 11.4218 (12) Å

  • β = 93.700 (6)°

  • V = 3391.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 295 (2) K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.875, Tmax = 0.928

  • 25199 measured reflections

  • 6639 independent reflections

  • 4509 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.092

  • S = 1.03

  • 6639 reflections

  • 478 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O1 0.94 2.09 2.974 (6) 155
O1W—H1B⋯O6 0.92 2.03 2.892 (6) 155
O2W—H2A⋯O2 0.88 1.99 2.869 (18) 175
O2W—H2B⋯O8i 0.86 2.42 3.28 (2) 173
O3—H3A⋯O2 0.82 1.81 2.540 (3) 147
O4—H4A⋯O7ii 0.82 2.09 2.877 (3) 160
O7—H7A⋯O6 0.82 1.82 2.546 (3) 147
O8—H8A⋯O3iii 0.82 2.10 2.917 (4) 171
C23—H23⋯O1Wiv 0.93 2.49 3.339 (6) 153
C25—H25⋯O6v 0.93 2.50 3.285 (5) 143
C30—H30⋯O1 0.93 2.56 3.155 (5) 122
C33—H33⋯O5 0.93 2.50 3.105 (5) 123
C38—H38⋯O2vi 0.93 2.36 3.182 (5) 147
C42—H42⋯O4vii 0.93 2.58 3.231 (5) 127
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x, -y+1, -z+1; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vii) -x+1, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of investigation on the nature of π-π stacking between aromatic rings (Su & Xu, 2004; Li et al., 2005), the title complex recently has been prepared and its crystal structure is reported here.

The molecular structure of the title compound is shown on Fig. 1. The Cd2+ cation is coordinated by two phenanthroline (phen) ligands and two 2,5-dihydroxybenzoate (dhba) anions with a distorted octahedral geometry. The centroid-to-centroid distance of 3.809 (2)Å between nearly parallel N1-pyridine and C2i-benzene rings (dihedral angle 4.89 (17)°; symmetry code: (i) x-1, y, z) and the centroid-to-centroid distance of 3.680 (2)Å between nearly parallel N4-pyridine and C12ii-benzene rings (dihedral angle 5.33 (11)°; symmetry code: (ii) x, y, z-1) indicate that dhba anions are involved in π-π stacking in the crystal structure (Fig. 2), which agrees with the situation found in the 3,5-dihydroxybenzoate complex of Cu2+ (Huang et al., 2006). The face-to-face separation of 3.35 (3)Å suggests the existence of π-π stacking between parallel C31-phen and C31iii-phen ring systems (Fig. 3) (symmetry code: (iii) -x, 1-y, 1-z). The crystal structure contains extensive O–H···O and C–H···O hydrogen bonding (Table 1).

Related literature top

For general background, see: Su & Xu (2004); Li et al. (2005). For a related structure, see: Huang et al. (2006).

Experimental top

Cd(NO3)2.4H2O (0.31 g, 1 mmol), dhba (0.31 g, 2 mmol), phen (0.36 g, 2 mmol) and Na2CO3 (0.10 g, 1 mmol) were dissolved in a water-ethanol mixture (20 ml, 2:1). The solution was refluxed for 2 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after 4 weeks.

Refinement top

The site occupancy factor of the O2W water molecule was initially refined and converged to 0.28, and fixed as 0.25 at final cycles of refinemens. Water H atoms were placed in chemical sensible positions and refined in riding mode with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C–H = 0.93Å and O–H = 0.82Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) or 1.5UeqU(O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme. The displacement ellipsoids are drawn at 40% probability level. H atoms are presented as a small spheres of arbitrary radius. Dashed lines indicate hydrogen bonding.
[Figure 2] Fig. 2. A diagram showing π-π stacking between phen and dhba (symmetry codes: (i) x-1, y, z; (ii) x, y, z-1).
[Figure 3] Fig. 3. A diagram showing π-π stacking between phen ligands (symmetry code: (iii) -x, 1-y, 1-z).
Bis(2,5-dihydroxybenzoato-κO)bis(1,10-phenathroline- κ2N,N')cadmium(II) 1.25-hydrate top
Crystal data top
[Cd(C7H5O4)2(C12H8N2)2]·1.25H2OF(000) = 1626
Mr = 801.55Dx = 1.570 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6929 reflections
a = 10.8992 (18) Åθ = 2.2–25.5°
b = 27.300 (2) ŵ = 0.71 mm1
c = 11.4218 (12) ÅT = 295 K
β = 93.700 (6)°Prism, colourless
V = 3391.5 (7) Å30.20 × 0.16 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6639 independent reflections
Radiation source: Fine-focus sealed tube4509 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 1.5°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 3331
Tmin = 0.875, Tmax = 0.928l = 814
25199 measured reflections
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: Geom
wR(F2) = 0.092H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
6639 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cd(C7H5O4)2(C12H8N2)2]·1.25H2OV = 3391.5 (7) Å3
Mr = 801.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8992 (18) ŵ = 0.71 mm1
b = 27.300 (2) ÅT = 295 K
c = 11.4218 (12) Å0.20 × 0.16 × 0.12 mm
β = 93.700 (6)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6639 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4509 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.928Rint = 0.064
25199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
6639 reflectionsΔρmin = 0.51 e Å3
478 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd0.27239 (2)0.627675 (9)0.32033 (2)0.03808 (10)
N10.0736 (3)0.61272 (10)0.3827 (3)0.0437 (8)
N20.2176 (3)0.54243 (10)0.2903 (3)0.0426 (7)
N30.2325 (3)0.71386 (10)0.2909 (3)0.0409 (7)
N40.1908 (2)0.64287 (10)0.1245 (3)0.0373 (7)
O10.4520 (2)0.60327 (9)0.2586 (2)0.0554 (7)
O20.5248 (2)0.67858 (9)0.2365 (2)0.0590 (8)
O30.7449 (2)0.69059 (9)0.1815 (2)0.0618 (8)
H3A0.67840.69820.20590.093*
O40.7610 (2)0.49241 (8)0.0835 (2)0.0627 (8)
H4A0.70090.47820.10670.094*
O50.3253 (2)0.65203 (10)0.5037 (2)0.0559 (7)
O60.3497 (3)0.57527 (10)0.5661 (2)0.0674 (8)
O70.4132 (2)0.55776 (9)0.7805 (2)0.0625 (8)
H7A0.39310.55120.71190.094*
O80.3815 (3)0.75593 (9)0.8687 (3)0.0688 (8)
H8A0.35020.77090.81220.103*
O1W0.5601 (4)0.53969 (17)0.4499 (5)0.164 (2)
H1A0.52630.55100.37700.246*
H1B0.51070.55180.50610.246*
O2W0.4794 (19)0.7748 (7)0.1426 (18)0.175 (8)0.25
H2A0.49510.74620.17480.262*0.25
H2B0.44710.76920.07280.262*0.25
C10.5335 (3)0.63324 (14)0.2289 (3)0.0428 (9)
C20.6459 (3)0.61142 (12)0.1815 (3)0.0374 (8)
C30.7463 (3)0.64152 (13)0.1592 (3)0.0438 (9)
C40.8490 (3)0.62084 (14)0.1130 (3)0.0527 (10)
H40.91600.64050.09850.063*
C50.8524 (3)0.57144 (14)0.0885 (3)0.0532 (11)
H50.92170.55810.05730.064*
C60.7541 (3)0.54164 (13)0.1099 (3)0.0451 (9)
C70.6515 (3)0.56179 (12)0.1553 (3)0.0410 (9)
H70.58480.54180.16870.049*
C110.3464 (3)0.62091 (14)0.5830 (4)0.0452 (10)
C120.3709 (3)0.63929 (12)0.7055 (3)0.0379 (9)
C130.4065 (3)0.60753 (13)0.7972 (4)0.0440 (9)
C140.4356 (3)0.62616 (15)0.9088 (4)0.0543 (10)
H140.46070.60500.96950.065*
C150.4274 (3)0.67550 (15)0.9302 (4)0.0535 (10)
H150.44820.68761.00490.064*
C160.3888 (3)0.70707 (13)0.8417 (4)0.0441 (9)
C170.3611 (3)0.68917 (12)0.7302 (3)0.0417 (9)
H170.33540.71070.67050.050*
C210.0050 (3)0.64614 (15)0.4309 (4)0.0552 (11)
H210.03770.67730.44310.066*
C220.1138 (4)0.63710 (16)0.4643 (4)0.0647 (12)
H220.15920.66190.49680.078*
C230.1624 (4)0.59145 (16)0.4486 (4)0.0614 (12)
H230.24150.58480.47020.074*
C240.0925 (3)0.55470 (14)0.3999 (3)0.0490 (10)
C250.1337 (4)0.50485 (16)0.3857 (4)0.0598 (12)
H250.21140.49640.40800.072*
C260.0631 (4)0.47059 (16)0.3413 (4)0.0586 (11)
H260.09310.43880.33290.070*
C270.0583 (4)0.48147 (14)0.3058 (3)0.0491 (10)
C280.1355 (4)0.44647 (14)0.2590 (4)0.0626 (12)
H280.10860.41440.24840.075*
C290.2502 (4)0.45961 (14)0.2292 (4)0.0617 (12)
H290.30220.43680.19780.074*
C300.2876 (4)0.50804 (13)0.2466 (4)0.0552 (11)
H300.36600.51670.22660.066*
C310.1027 (3)0.52963 (13)0.3183 (3)0.0421 (9)
C320.0266 (3)0.56682 (13)0.3680 (3)0.0417 (9)
C330.2558 (3)0.74832 (14)0.3709 (4)0.0526 (10)
H330.28900.73910.44460.063*
C340.2328 (4)0.79784 (15)0.3495 (5)0.0650 (13)
H340.25060.82110.40760.078*
C350.1838 (4)0.81149 (14)0.2419 (5)0.0616 (12)
H350.16770.84440.22610.074*
C360.1574 (3)0.77631 (13)0.1546 (4)0.0465 (10)
C370.1035 (4)0.78818 (15)0.0403 (4)0.0587 (12)
H370.08410.82060.02200.070*
C380.0809 (3)0.75324 (16)0.0406 (4)0.0614 (12)
H380.04510.76170.11390.074*
C390.1107 (3)0.70333 (14)0.0161 (4)0.0455 (10)
C400.0917 (3)0.66543 (17)0.0998 (4)0.0591 (11)
H400.05860.67250.17500.071*
C410.1219 (3)0.61860 (15)0.0698 (4)0.0549 (11)
H410.10900.59330.12360.066*
C420.1721 (3)0.60929 (15)0.0422 (4)0.0496 (10)
H420.19420.57720.06080.060*
C430.1612 (3)0.69012 (13)0.0952 (3)0.0386 (9)
C440.1847 (3)0.72736 (13)0.1834 (3)0.0386 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.04016 (15)0.03730 (16)0.03675 (18)0.00085 (12)0.00215 (11)0.00014 (13)
N10.0454 (17)0.0433 (18)0.043 (2)0.0004 (14)0.0040 (15)0.0050 (15)
N20.0491 (18)0.0400 (17)0.038 (2)0.0047 (14)0.0013 (15)0.0008 (15)
N30.0441 (17)0.0397 (18)0.039 (2)0.0014 (13)0.0033 (15)0.0020 (16)
N40.0418 (16)0.0407 (17)0.0295 (18)0.0013 (13)0.0030 (14)0.0008 (15)
O10.0436 (15)0.0530 (16)0.071 (2)0.0009 (12)0.0142 (14)0.0005 (14)
O20.0641 (17)0.0426 (16)0.071 (2)0.0051 (13)0.0099 (15)0.0185 (14)
O30.0644 (18)0.0385 (15)0.083 (2)0.0101 (12)0.0099 (16)0.0104 (14)
O40.0762 (19)0.0411 (16)0.073 (2)0.0051 (13)0.0205 (16)0.0073 (14)
O50.0759 (19)0.0534 (17)0.0372 (17)0.0074 (14)0.0060 (14)0.0017 (14)
O60.101 (2)0.0471 (17)0.055 (2)0.0132 (15)0.0091 (17)0.0127 (15)
O70.083 (2)0.0428 (16)0.062 (2)0.0002 (14)0.0042 (16)0.0066 (14)
O80.092 (2)0.0461 (17)0.067 (2)0.0010 (15)0.0033 (17)0.0163 (15)
O1W0.106 (3)0.200 (5)0.191 (5)0.021 (3)0.043 (3)0.052 (4)
O2W0.22 (2)0.158 (17)0.144 (19)0.026 (15)0.026 (16)0.012 (14)
C10.042 (2)0.049 (2)0.037 (2)0.0022 (18)0.0025 (17)0.0046 (19)
C20.0400 (19)0.037 (2)0.035 (2)0.0011 (15)0.0003 (17)0.0003 (17)
C30.050 (2)0.041 (2)0.040 (3)0.0044 (16)0.0013 (19)0.0014 (17)
C40.047 (2)0.054 (3)0.058 (3)0.0085 (18)0.012 (2)0.009 (2)
C50.049 (2)0.060 (3)0.052 (3)0.0049 (19)0.014 (2)0.001 (2)
C60.058 (2)0.040 (2)0.037 (2)0.0063 (18)0.0031 (19)0.0011 (18)
C70.042 (2)0.039 (2)0.042 (2)0.0003 (16)0.0018 (18)0.0032 (17)
C110.043 (2)0.049 (3)0.044 (3)0.0119 (17)0.0054 (18)0.008 (2)
C120.0353 (19)0.043 (2)0.036 (2)0.0043 (15)0.0035 (16)0.0005 (17)
C130.048 (2)0.039 (2)0.046 (3)0.0022 (17)0.0075 (19)0.005 (2)
C140.057 (2)0.060 (3)0.046 (3)0.005 (2)0.003 (2)0.014 (2)
C150.057 (2)0.067 (3)0.036 (3)0.009 (2)0.002 (2)0.005 (2)
C160.048 (2)0.045 (2)0.039 (3)0.0036 (17)0.0025 (19)0.005 (2)
C170.044 (2)0.037 (2)0.043 (3)0.0012 (16)0.0008 (18)0.0035 (18)
C210.053 (2)0.052 (2)0.061 (3)0.0064 (19)0.010 (2)0.006 (2)
C220.058 (3)0.065 (3)0.073 (3)0.017 (2)0.017 (2)0.014 (2)
C230.045 (2)0.083 (3)0.057 (3)0.010 (2)0.012 (2)0.024 (3)
C240.043 (2)0.066 (3)0.038 (2)0.0071 (19)0.0060 (19)0.017 (2)
C250.049 (2)0.080 (3)0.049 (3)0.023 (2)0.007 (2)0.020 (2)
C260.066 (3)0.059 (3)0.050 (3)0.027 (2)0.008 (2)0.010 (2)
C270.063 (3)0.046 (2)0.036 (2)0.0118 (19)0.008 (2)0.0047 (19)
C280.087 (3)0.043 (2)0.057 (3)0.012 (2)0.006 (3)0.001 (2)
C290.073 (3)0.042 (2)0.070 (3)0.001 (2)0.006 (2)0.007 (2)
C300.058 (2)0.046 (2)0.062 (3)0.0027 (19)0.010 (2)0.000 (2)
C310.049 (2)0.044 (2)0.032 (2)0.0084 (17)0.0033 (18)0.0103 (18)
C320.042 (2)0.054 (2)0.029 (2)0.0024 (17)0.0011 (17)0.0100 (18)
C330.055 (2)0.048 (2)0.055 (3)0.0009 (19)0.001 (2)0.010 (2)
C340.069 (3)0.045 (3)0.081 (4)0.000 (2)0.005 (3)0.019 (3)
C350.054 (3)0.036 (2)0.095 (4)0.0041 (18)0.009 (3)0.001 (3)
C360.036 (2)0.043 (2)0.061 (3)0.0022 (17)0.011 (2)0.004 (2)
C370.050 (2)0.049 (3)0.078 (4)0.0118 (19)0.011 (2)0.021 (3)
C380.051 (2)0.076 (3)0.058 (3)0.010 (2)0.006 (2)0.030 (3)
C390.038 (2)0.058 (3)0.041 (3)0.0046 (17)0.0042 (18)0.012 (2)
C400.051 (2)0.088 (3)0.039 (3)0.001 (2)0.000 (2)0.002 (3)
C410.054 (2)0.070 (3)0.041 (3)0.002 (2)0.003 (2)0.010 (2)
C420.047 (2)0.059 (3)0.044 (3)0.0043 (19)0.006 (2)0.002 (2)
C430.0302 (18)0.045 (2)0.041 (2)0.0007 (15)0.0055 (17)0.0082 (19)
C440.0310 (18)0.043 (2)0.043 (3)0.0016 (15)0.0098 (17)0.0058 (19)
Geometric parameters (Å, º) top
Cd—O12.225 (2)C14—H140.9300
Cd—O52.237 (3)C15—C161.374 (5)
Cd—N12.360 (3)C15—H150.9300
Cd—N42.389 (3)C16—C171.379 (5)
Cd—N32.412 (3)C17—H170.9300
Cd—N22.422 (3)C21—C221.396 (5)
N1—C211.322 (4)C21—H210.9300
N1—C321.360 (4)C22—C231.361 (5)
N2—C301.327 (4)C22—H220.9300
N2—C311.358 (4)C23—C241.397 (5)
N3—C331.325 (4)C23—H230.9300
N3—C441.353 (4)C24—C321.410 (5)
N4—C421.319 (4)C24—C251.439 (5)
N4—C431.366 (4)C25—C261.332 (5)
O1—C11.270 (4)C25—H250.9300
O2—C11.245 (4)C26—C271.440 (5)
O3—C31.364 (4)C26—H260.9300
O3—H3A0.8200C27—C281.402 (5)
O4—C61.380 (4)C27—C311.405 (5)
O4—H4A0.8200C28—C291.364 (5)
O5—C111.252 (4)C28—H280.9300
O6—C111.262 (4)C29—C301.394 (5)
O7—C131.375 (4)C29—H290.9300
O7—H7A0.8200C30—H300.9300
O8—C161.373 (4)C31—C321.450 (5)
O8—H8A0.8200C33—C341.394 (5)
O1W—H1A0.9410C33—H330.9300
O1W—H1B0.9244C34—C351.360 (6)
O2W—H2A0.8772C34—H340.9300
O2W—H2B0.8639C35—C361.400 (5)
C1—C21.495 (5)C35—H350.9300
C2—C71.390 (4)C36—C441.404 (5)
C2—C31.405 (5)C36—C371.434 (6)
C3—C41.387 (5)C37—C381.339 (6)
C4—C51.378 (5)C37—H370.9300
C4—H40.9300C38—C391.424 (5)
C5—C61.380 (5)C38—H380.9300
C5—H50.9300C39—C431.399 (5)
C6—C71.377 (5)C39—C401.414 (5)
C7—H70.9300C40—C411.358 (5)
C11—C121.494 (5)C40—H400.9300
C12—C171.396 (4)C41—C421.383 (5)
C12—C131.395 (5)C41—H410.9300
C13—C141.390 (5)C42—H420.9300
C14—C151.373 (5)C43—C441.443 (5)
O1—Cd—O5101.93 (10)C16—C17—H17119.4
O1—Cd—N1152.57 (10)C12—C17—H17119.4
O5—Cd—N187.41 (10)N1—C21—C22123.5 (4)
O1—Cd—N492.14 (10)N1—C21—H21118.3
O5—Cd—N4151.96 (10)C22—C21—H21118.3
N1—Cd—N491.11 (10)C23—C22—C21119.0 (4)
O1—Cd—N3113.72 (9)C23—C22—H22120.5
O5—Cd—N382.76 (10)C21—C22—H22120.5
N1—Cd—N392.88 (9)C22—C23—C24119.5 (4)
N4—Cd—N369.34 (10)C22—C23—H23120.2
O1—Cd—N283.18 (9)C24—C23—H23120.2
O5—Cd—N2117.68 (10)C23—C24—C32118.0 (4)
N1—Cd—N269.74 (10)C23—C24—C25123.4 (4)
N4—Cd—N287.76 (10)C32—C24—C25118.6 (4)
N3—Cd—N2151.29 (10)C26—C25—C24121.6 (4)
C21—N1—C32118.0 (3)C26—C25—H25119.2
C21—N1—Cd124.1 (3)C24—C25—H25119.2
C32—N1—Cd117.9 (2)C25—C26—C27121.7 (4)
C30—N2—C31117.9 (3)C25—C26—H26119.1
C30—N2—Cd126.2 (2)C27—C26—H26119.1
C31—N2—Cd115.9 (2)C28—C27—C31117.7 (4)
C33—N3—C44118.5 (3)C28—C27—C26123.5 (4)
C33—N3—Cd124.9 (3)C31—C27—C26118.8 (4)
C44—N3—Cd116.6 (2)C29—C28—C27119.9 (4)
C42—N4—C43117.3 (3)C29—C28—H28120.1
C42—N4—Cd125.3 (3)C27—C28—H28120.1
C43—N4—Cd117.5 (2)C28—C29—C30118.5 (4)
C1—O1—Cd122.5 (2)C28—C29—H29120.7
C3—O3—H3A109.5C30—C29—H29120.7
C6—O4—H4A109.5N2—C30—C29123.7 (4)
C11—O5—Cd120.0 (2)N2—C30—H30118.2
C13—O7—H7A109.5C29—C30—H30118.2
C16—O8—H8A109.5N2—C31—C27122.3 (3)
H1A—O1W—H1B106.5N2—C31—C32118.1 (3)
H2A—O2W—H2B106.5C27—C31—C32119.5 (3)
O2—C1—O1124.3 (3)N1—C32—C24122.0 (3)
O2—C1—C2119.3 (3)N1—C32—C31118.3 (3)
O1—C1—C2116.3 (3)C24—C32—C31119.8 (3)
C7—C2—C3119.0 (3)N3—C33—C34122.9 (4)
C7—C2—C1121.0 (3)N3—C33—H33118.5
C3—C2—C1119.9 (3)C34—C33—H33118.5
O3—C3—C4119.3 (3)C35—C34—C33118.7 (4)
O3—C3—C2121.5 (3)C35—C34—H34120.7
C4—C3—C2119.2 (3)C33—C34—H34120.7
C5—C4—C3120.6 (3)C34—C35—C36120.4 (4)
C5—C4—H4119.7C34—C35—H35119.8
C3—C4—H4119.7C36—C35—H35119.8
C4—C5—C6120.6 (3)C35—C36—C44117.1 (4)
C4—C5—H5119.7C35—C36—C37123.1 (4)
C6—C5—H5119.7C44—C36—C37119.8 (4)
C7—C6—C5119.3 (3)C38—C37—C36120.9 (4)
C7—C6—O4121.9 (3)C38—C37—H37119.6
C5—C6—O4118.8 (3)C36—C37—H37119.6
C6—C7—C2121.2 (3)C37—C38—C39121.1 (4)
C6—C7—H7119.4C37—C38—H38119.4
C2—C7—H7119.4C39—C38—H38119.4
O5—C11—O6124.4 (4)C43—C39—C40117.2 (4)
O5—C11—C12117.6 (3)C43—C39—C38119.7 (4)
O6—C11—C12118.0 (4)C40—C39—C38123.1 (4)
C17—C12—C13118.4 (3)C41—C40—C39119.7 (4)
C17—C12—C11120.4 (3)C41—C40—H40120.2
C13—C12—C11121.2 (3)C39—C40—H40120.2
O7—C13—C14118.5 (4)C40—C41—C42118.8 (4)
O7—C13—C12121.7 (4)C40—C41—H41120.6
C14—C13—C12119.8 (3)C42—C41—H41120.6
C15—C14—C13120.6 (4)N4—C42—C41124.4 (4)
C15—C14—H14119.7N4—C42—H42117.8
C13—C14—H14119.7C41—C42—H42117.8
C14—C15—C16120.3 (4)N4—C43—C39122.6 (3)
C14—C15—H15119.8N4—C43—C44117.7 (3)
C16—C15—H15119.8C39—C43—C44119.7 (3)
C15—C16—O8117.6 (4)N3—C44—C36122.4 (3)
C15—C16—C17119.7 (4)N3—C44—C43118.8 (3)
O8—C16—C17122.7 (4)C36—C44—C43118.8 (4)
C16—C17—C12121.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10.942.092.974 (6)155
O1W—H1B···O60.922.032.892 (6)155
O2W—H2A···O20.881.992.869 (18)175
O2W—H2B···O8i0.862.423.28 (2)173
O3—H3A···O20.821.812.540 (3)147
O4—H4A···O7ii0.822.092.877 (3)160
O7—H7A···O60.821.822.546 (3)147
O8—H8A···O3iii0.822.102.917 (4)171
C23—H23···O1Wiv0.932.493.339 (6)153
C25—H25···O6v0.932.503.285 (5)143
C30—H30···O10.932.563.155 (5)122
C33—H33···O50.932.503.105 (5)123
C38—H38···O2vi0.932.363.182 (5)147
C42—H42···O4vii0.932.583.231 (5)127
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z+1/2; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x1/2, y+3/2, z1/2; (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C7H5O4)2(C12H8N2)2]·1.25H2O
Mr801.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)10.8992 (18), 27.300 (2), 11.4218 (12)
β (°) 93.700 (6)
V3)3391.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.875, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
25199, 6639, 4509
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.092, 1.03
No. of reflections6639
No. of parameters478
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.51

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO (Rigaku, 1998, CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10.942.092.974 (6)155
O1W—H1B···O60.922.032.892 (6)155
O2W—H2A···O20.881.992.869 (18)175
O2W—H2B···O8i0.862.423.28 (2)173
O3—H3A···O20.821.812.540 (3)147
O4—H4A···O7ii0.822.092.877 (3)160
O7—H7A···O60.821.822.546 (3)147
O8—H8A···O3iii0.822.102.917 (4)171
C23—H23···O1Wiv0.932.493.339 (6)153
C25—H25···O6v0.932.503.285 (5)143
C30—H30···O10.932.563.155 (5)122
C33—H33···O50.932.503.105 (5)123
C38—H38···O2vi0.932.363.182 (5)147
C42—H42···O4vii0.932.583.231 (5)127
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z+1/2; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x1/2, y+3/2, z1/2; (vii) x+1, y+1, z.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, X., Xiao, L.-P. & Xu, D.-J. (2006). Acta Cryst. E62, m2246–m2248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H., Liu, J.-G. & Xu, D.-J. (2005). Acta Cryst. E61, m761–m763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds