organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl [hydr­­oxy(phen­yl)meth­yl]phospho­nate

aJiangsu Key Laboratory for the Chemistry of Low-dimensional Materials, Department of Chemistry, Huaiyin Teachers College, Huaian 223300, Jiangsu Province, People's Republic of China, bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123, People's Republic of China, and cDepartment of Chemistry and Biology, Yulin Normal University, Yulin 537000, People's Republic of China
*Correspondence e-mail: annleet@126.com

(Received 16 June 2008; accepted 17 June 2008; online 21 June 2008)

Mol­ecules of the title compound, C11H17O4P, are linked into chiral helical chains along the crystallographic b axis via O—H⋯O hydrogen bonds between the hydr­oxy group and an O atom of the phospho­nate group. One ethyl group is disordered over two positions; the site occupancy factors are ca 0.7 and 0.3.

Related literature

For related literature, see: Fang et al. (2006a[Fang, H., Fang, M.-J., Luo, S.-N., Huang, R.-B. & Zhao, Y.-F. (2006a). Acta Cryst. E62, o637-o638.],b[Fang, H., Fang, M.-J., Zeng, Z.-P., Wei, Z.-B. & Zhao, Y.-F. (2006b). Acta Cryst. E62, o1378-o1379.],c[Fang, M.-J., Fang, H., Zeng, Z.-P., Luo, S.-N. & Zhao, Y.-F. (2006c). Acta Cryst. E62, o1998-o1999.], 2007[Fang, H., Fang, M.-J. & Zhao, Y.-F. (2007). Acta Cryst. E63, o4002.]); Kaboudin (2000[Kaboudin, B. (2000). Tetrahedron Lett. 41, 3169-3171.]); Maier & Diel (1994[Maier, L. & Diel, P. J. (1994). Phosphorus Sulfur Silicon, 90, 259-279.]); Stowasser et al. (1992[Stowasser, B., Budt, K., Jian-Qi, L., Peyman, A. & Ruppert, D. (1992). Tetrahedron Lett. 33, 6625-6628.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17O4P

  • Mr = 244.22

  • Monoclinic, P 21 /n

  • a = 9.2361 (6) Å

  • b = 8.0719 (5) Å

  • c = 17.4599 (13) Å

  • β = 95.096 (5)°

  • V = 1296.54 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.940, Tmax = 0.959

  • 10679 measured reflections

  • 2345 independent reflections

  • 1723 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.174

  • S = 1.07

  • 2345 reflections

  • 168 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.90 2.716 (3) 174
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The α–hydroxyphosphonic esters and their derivatives have attracted considerable interest owing to their interesting biological activities, such as inhibition of inositol monophosphatase (Maier & Diel, 1994) and HIV protease (Stowasser et al., 1992). These compounds are generally synthesized from aldehydes and phosphites via the base–catalyzed Pudovik reaction, as exemplified by diisopropyl (hydroxyphenylmethyl)phosphonate (Fang, et al., 2006a), dimethyl [hydroxy(phenyl)methyl]phosphonate (Fang, et al., 2006b), diphenyl (hydroxyphenylmethyl)phosphonate (Fang, et al., 2006c) and diethyl hydroxy(4–methoxyphenyl)methylphosphonate (Fang, et al., 2007). As an extension of these studies, we report herein on the structure of C11H17O4P, (I), (Fig. 1).

In I, the C10 and C11 atoms are disordered over two sets of sites with occupancies of 0.727 (7) and 0.273 (7). All bond distances and bond angles of I are normal and call for no further comment.

There exist a strong intermolecular H-bonding between O1—H1···O2i (symmetry code: (i) 1/2-x, 1/2+y, 1/2-z) in I. Molecules of I are linked into chiral helical chains by this H–bonding, running parallel to the b axis (Fig. 2). But these chains are aligned in an antiparallel fashion to form inversion centers in the crystal, thus the whole structure is achiral (Fig.3).

Related literature top

For related literature, see: Fang et al. (2006a,b,c; 2007); Kaboudin (2000); Maier & Diel (1994); Stowasser et al. (1992).

Experimental top

All chemicals were obtained from commercial sources and used directly without further purification. Magnesium oxide (2 g) was added to a stirred mixture of diethyl phosphite (0.02 mol) and aldehyde (0.02 mol) at room temperature. After 2 h the mixture was washed by dichloromethane (50 ml) and dried with CaCl2; evaporation of the solvent gave the crude product. The products were crystallized from n–hexane (Kaboudin, 2000).

Refinement top

All H atoms were positioned geometrically and were allowed to ride on their parent atoms, with C—H distances of 0.93–0.97Å (0.82Å for O—H group) and Uiso(H) values constrained to be 1.2 (1.5 for –OH and –CH3 group) times Ueq of the carrier atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular structure of I with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. Only major part of disoprdered moiety are presented. The H atoms are drawn as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The chiral helical chain constructed by O—H···O H–bonds.
[Figure 3] Fig. 3. Part of the crystal structure of I, showing chiral helical chains aligned in an antiparallel fashion. The H atoms not involved in H–bonds are omitted for clarity.
Diethyl [hydroxy(phenyl)methyl]phosphonate top
Crystal data top
C11H17O4PZ = 4
Mr = 244.22F(000) = 520
Monoclinic, P21/nDx = 1.251 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.2361 (6) Åθ = 2.3–25.2°
b = 8.0719 (5) ŵ = 0.21 mm1
c = 17.4599 (13) ÅT = 296 K
β = 95.096 (5)°Prism, colourless
V = 1296.54 (15) Å30.30 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury
diffractometer
2345 independent reflections
Radiation source: Fine–focus sealed tube1723 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.31 pixels mm-1θmax = 25.2°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(Jacobson, 1998)
k = 98
Tmin = 0.940, Tmax = 0.959l = 1720
10679 measured reflections
Refinement top
Refinement on F2Primary atom site location: Direct
Least-squares matrix: FullSecondary atom site location: Difmap
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: Geom
wR(F2) = 0.174H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1001P)2 + 0.236P]
where P = (Fo2 + 2Fc2)/3
2345 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.38 e Å3
48 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H17O4PV = 1296.54 (15) Å3
Mr = 244.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2361 (6) ŵ = 0.21 mm1
b = 8.0719 (5) ÅT = 296 K
c = 17.4599 (13) Å0.30 × 0.30 × 0.20 mm
β = 95.096 (5)°
Data collection top
Rigaku Mercury
diffractometer
2345 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1723 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.959Rint = 0.030
10679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05548 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.08Δρmax = 0.38 e Å3
2345 reflectionsΔρmin = 0.34 e Å3
168 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0039 (3)0.8100 (3)0.27207 (16)0.0699 (7)
C20.1128 (4)0.9141 (5)0.2543 (2)0.0945 (10)
H20.10800.99160.21520.113*
C30.2344 (5)0.9061 (6)0.2925 (3)0.1194 (14)
H30.31150.97730.27890.143*
C40.2447 (5)0.7966 (7)0.3498 (3)0.1225 (15)
H40.32780.79270.37610.147*
C50.1305 (5)0.6901 (6)0.3689 (2)0.1170 (14)
H50.13700.61380.40840.140*
C60.0049 (4)0.6957 (4)0.3296 (2)0.0888 (10)
H60.07160.62290.34230.107*
C70.1365 (3)0.8216 (3)0.22835 (17)0.0700 (7)
H70.15170.93760.21460.084*
C80.0806 (5)0.7118 (5)0.0237 (2)0.1202 (15)
H8A0.00720.67010.00780.144*
H8B0.14030.61910.03700.144*
C90.1684 (5)0.8298 (5)0.0188 (2)0.1294 (16)
H9A0.24270.86890.01180.194*
H9B0.21280.77910.06480.194*
H9C0.10930.92130.03220.194*
C100.3970 (12)0.693 (3)0.1245 (10)0.128 (2)0.273 (7)
H10A0.39220.60730.16300.153*0.273 (7)
H10B0.45120.78640.14770.153*0.273 (7)
C110.4683 (18)0.629 (2)0.0560 (10)0.131 (2)0.273 (7)
H11A0.47530.71680.01940.197*0.273 (7)
H11B0.41100.54040.03250.197*0.273 (7)
H11C0.56380.58890.07250.197*0.273 (7)
C10'0.3723 (5)0.6344 (7)0.0883 (5)0.122 (2)0.727 (7)
H10C0.36210.57700.03940.147*0.727 (7)
H10D0.37770.55290.12930.147*0.727 (7)
C11'0.5025 (6)0.7386 (9)0.0942 (5)0.136 (2)0.727 (7)
H11D0.49760.81490.05180.204*0.727 (7)
H11E0.58720.67000.09280.204*0.727 (7)
H11F0.50810.79920.14160.204*0.727 (7)
O10.2648 (2)0.7606 (3)0.26977 (14)0.0876 (7)
H10.31010.83800.29080.131*
O20.1031 (2)0.5201 (2)0.15362 (11)0.0787 (6)
O30.0104 (2)0.7844 (3)0.09335 (11)0.0889 (7)
O40.2499 (3)0.7456 (3)0.09497 (16)0.1077 (8)
P10.11894 (8)0.69802 (9)0.14126 (4)0.0710 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0760 (17)0.0661 (16)0.0641 (15)0.0012 (13)0.0139 (13)0.0117 (12)
C20.097 (2)0.101 (2)0.084 (2)0.0294 (19)0.0000 (18)0.0047 (17)
C30.100 (3)0.146 (4)0.111 (3)0.030 (3)0.002 (2)0.027 (3)
C40.107 (3)0.144 (4)0.119 (3)0.012 (3)0.027 (3)0.048 (3)
C50.143 (4)0.119 (3)0.091 (3)0.029 (3)0.022 (3)0.005 (2)
C60.102 (2)0.080 (2)0.082 (2)0.0091 (17)0.0077 (19)0.0029 (16)
C70.0726 (16)0.0543 (14)0.0788 (17)0.0010 (12)0.0172 (14)0.0031 (12)
C80.125 (3)0.118 (3)0.108 (3)0.018 (2)0.044 (3)0.014 (2)
C90.148 (4)0.129 (3)0.100 (3)0.009 (3)0.050 (3)0.001 (2)
C100.093 (3)0.113 (5)0.179 (6)0.013 (4)0.031 (4)0.015 (4)
C110.098 (4)0.117 (5)0.181 (6)0.016 (4)0.031 (4)0.012 (4)
C10'0.091 (3)0.107 (4)0.173 (6)0.014 (2)0.038 (3)0.016 (3)
C11'0.101 (3)0.121 (4)0.188 (6)0.007 (3)0.023 (3)0.012 (4)
O10.0732 (12)0.0743 (12)0.1085 (16)0.0046 (10)0.0301 (12)0.0079 (12)
O20.0826 (13)0.0656 (12)0.0845 (13)0.0092 (9)0.0106 (10)0.0046 (9)
O30.1065 (16)0.0916 (15)0.0645 (11)0.0306 (11)0.0157 (11)0.0027 (9)
O40.1062 (16)0.0990 (16)0.1221 (19)0.0288 (14)0.0325 (15)0.0324 (15)
P10.0741 (5)0.0677 (5)0.0694 (5)0.0125 (3)0.0035 (4)0.0054 (3)
Geometric parameters (Å, º) top
C1—C61.371 (4)C9—H9B0.9600
C1—C21.380 (4)C9—H9C0.9600
C1—C71.503 (4)C10—O41.471 (8)
C2—C31.358 (5)C10—C111.509 (10)
C2—H20.9300C10—H10A0.9700
C3—C41.344 (7)C10—H10B0.9700
C3—H30.9300C11—H11A0.9600
C4—C51.378 (7)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C5—C61.401 (5)C10'—O41.456 (5)
C5—H50.9300C10'—C11'1.464 (7)
C6—H60.9300C10'—H10C0.9700
C7—O11.420 (3)C10'—H10D0.9700
C7—P11.814 (3)C11'—H11D0.9600
C7—H70.9800C11'—H11E0.9600
C8—C91.418 (5)C11'—H11F0.9600
C8—O31.450 (4)O1—H10.82
C8—H8A0.9700O2—P11.462 (2)
C8—H8B0.9700O3—P11.561 (2)
C9—H9A0.9600O4—P11.562 (3)
C6—C1—C2118.6 (3)H9A—C9—H9B109.5
C6—C1—C7121.2 (3)C8—C9—H9C109.5
C2—C1—C7120.2 (3)H9A—C9—H9C109.5
C3—C2—C1121.6 (4)H9B—C9—H9C109.5
C3—C2—H2119.2O4—C10—C11105.9 (11)
C1—C2—H2119.2O4—C10—H10A110.5
C4—C3—C2120.9 (4)C11—C10—H10A110.5
C4—C3—H3119.6O4—C10—H10B110.5
C2—C3—H3119.6C11—C10—H10B110.5
C3—C4—C5119.1 (4)H10A—C10—H10B108.7
C3—C4—H4120.4O4—C10'—C11'106.2 (5)
C5—C4—H4120.4O4—C10'—H10C110.5
C4—C5—C6120.7 (4)C11'—C10'—H10C110.5
C4—C5—H5119.6O4—C10'—H10D110.5
C6—C5—H5119.6C11'—C10'—H10D110.5
C1—C6—C5119.1 (4)H10C—C10'—H10D108.7
C1—C6—H6120.5C10'—C11'—H11D109.5
C5—C6—H6120.5C10'—C11'—H11E109.5
O1—C7—C1113.6 (2)H11D—C11'—H11E109.5
O1—C7—P1104.17 (19)C10'—C11'—H11F109.5
C1—C7—P1112.03 (18)H11D—C11'—H11F109.5
O1—C7—H7109.0H11E—C11'—H11F109.5
C1—C7—H7109.0C7—O1—H1109.5
P1—C7—H7109.0C8—O3—P1122.2 (2)
C9—C8—O3111.1 (3)C10'—O4—P1122.1 (3)
C9—C8—H8A109.4C10—O4—P1118.8 (8)
O3—C8—H8A109.4O2—P1—O3115.86 (12)
C9—C8—H8B109.4O2—P1—O4114.24 (13)
O3—C8—H8B109.4O3—P1—O4101.79 (14)
H8A—C8—H8B108.0O2—P1—C7114.79 (12)
C8—C9—H9A109.5O3—P1—C7102.18 (12)
C8—C9—H9B109.5O4—P1—C7106.42 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.902.716 (3)174
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H17O4P
Mr244.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.2361 (6), 8.0719 (5), 17.4599 (13)
β (°) 95.096 (5)
V3)1296.54 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.940, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
10679, 2345, 1723
Rint0.030
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.174, 1.08
No. of reflections2345
No. of parameters168
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.8992.716 (3)173.49
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Program for Excellent Talents in Huaiyin Teachers College (ETHYTC, 07QNZC010) and the Natural Science Foundation of the Education Committee of Guangxi Province.

References

First citationFang, H., Fang, M.-J., Luo, S.-N., Huang, R.-B. & Zhao, Y.-F. (2006a). Acta Cryst. E62, o637–o638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFang, M.-J., Fang, H., Zeng, Z.-P., Luo, S.-N. & Zhao, Y.-F. (2006c). Acta Cryst. E62, o1998–o1999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFang, H., Fang, M.-J., Zeng, Z.-P., Wei, Z.-B. & Zhao, Y.-F. (2006b). Acta Cryst. E62, o1378–o1379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFang, H., Fang, M.-J. & Zhao, Y.-F. (2007). Acta Cryst. E63, o4002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKaboudin, B. (2000). Tetrahedron Lett. 41, 3169–3171.  Web of Science CrossRef CAS Google Scholar
First citationMaier, L. & Diel, P. J. (1994). Phosphorus Sulfur Silicon, 90, 259–279.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStowasser, B., Budt, K., Jian-Qi, L., Peyman, A. & Ruppert, D. (1992). Tetrahedron Lett. 33, 6625–6628.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds