organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(E)-(3-Methyl-5-thioxo-4,5-di­hydro-1H-1,2,4-triazol-4-yl)imino­meth­yl]benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 11 April 2008; accepted 11 June 2008; online 13 June 2008)

In the title compound, C11H9N5S, the dihedral angle between the mean planes of the thione-substituted triazole ring and benzonitrile ring is 4.28 (3)°. Inter­molecular N—H⋯S hydrogen bonds link the mol­ecules together into characteristic dimers.

Related literature

For the application of benzotriazole compounds in industry, see: Sharma & Bahel (1982[Sharma, R. S. & Bahel, S. C. (1982). J. Indian Chem. Soc. 59, 877-879.]); Grasso (1988[Grasso, S. A. (1988). Farm. Ed. Sci. 43, 851-854.]); Eweiss et al. (1986[Eweiss, N., Bahajaj, A. & Elsherbini, E. (1986). J. Heterocycl. Chem. 23, 1451-1458.]); Awad et al. (1991[Awad, I., Abdel-Rahman, A. & Bakite, E. (1991). J. Chem. Technol. Biotechnol. 51, 483-486.]); Pillard et al. (2001[Pillard, D. A., Cornell, J. S., Dufresne, D. L. & Hernandez, M. T. (2001). Water Res. 35, 557-560.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9N5S

  • Mr = 243.29

  • Triclinic, [P \overline 1]

  • a = 6.975 (2) Å

  • b = 7.682 (2) Å

  • c = 11.412 (2) Å

  • α = 90.262 (7)°

  • β = 94.328 (14)°

  • γ = 104.713 (17)°

  • V = 589.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 (2) K

  • 0.70 × 0.50 × 0.50 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.854, Tmax = 0.901

  • 5954 measured reflections

  • 2659 independent reflections

  • 2178 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.05

  • 2659 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3D⋯N5i 0.86 2.11 2.934 (2) 162
Symmetry code: (i) x, y+1, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It has been found that 1,2,4-thiadiazoles possess a broad spectrum of biological activities and can be widely used as fungicides (Sharma & Bahel, 1982) and insecticides (Grasso, 1988). In addition, amine- and thione-substituted triazoles have been studied as anti-inflammatory and antimicrobial agents (Eweiss et al., 1986; Awad et al., 1991). Benzotriazole and its derivatives comprise an important class of corrosion inhibitors, typically used as trace additives in industrial chemical mixtures, such as coolants, cutting fluids and hydraulic fluids (Pillard et al., 2001). We present its crystal structure here. The molecule exists in the thione tautomeric form, with an S···C distance of 1.6752 (3) A °, which indicates substantial double-bond character for this bond [1.671 (24) A °, Allen et al., 1987]. The dihedral angle between thione-substituted triazole ring and benzonitrile ring is 4.28 (3) °. N-H···N hydrogen bonds are observed in the crystal structure which link the molecules into dimers.

Related literature top

For the application of benzotriazole compounds in industry, see: Sharma & Bahel (1982); Grasso (1988); Eweiss et al. (1986); Awad et al. (1991); Pillard et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-amino-3-methanyl-1H-1,2,4-triazole-5(4H)- thione (0.02 mol) and 4-formylbenzonitrile (0.02 mol) was refluxed at 391 K for 20 min in methanol. The mixture was then filtered and crystallized from ethanol to afford the target material (yield 89%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were calculated geometrically, with C—H distances in the range 0.93 to 0.97Å and an N—H distance of 0.86 Å, and refined using a riding model, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed down the a axis.
4-[(E)-(3-Methyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-4- yl)iminomethyl]benzonitrile top
Crystal data top
C11H9N5SZ = 2
Mr = 243.29F(000) = 252
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.975 (2) ÅCell parameters from 1492 reflections
b = 7.682 (2) Åθ = 3.0–27.4°
c = 11.412 (2) ŵ = 0.26 mm1
α = 90.262 (7)°T = 293 K
β = 94.328 (14)°Block, colorless
γ = 104.713 (17)°0.70 × 0.50 × 0.50 mm
V = 589.5 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
2659 independent reflections
Radiation source: fine-focus sealed tube2178 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.854, Tmax = 0.901l = 1414
5954 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.1343P]
where P = (Fo2 + 2Fc2)/3
2659 reflections(Δ/σ)max = 0.002
155 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H9N5Sγ = 104.713 (17)°
Mr = 243.29V = 589.5 (3) Å3
Triclinic, P1Z = 2
a = 6.975 (2) ÅMo Kα radiation
b = 7.682 (2) ŵ = 0.26 mm1
c = 11.412 (2) ÅT = 293 K
α = 90.262 (7)°0.70 × 0.50 × 0.50 mm
β = 94.328 (14)°
Data collection top
Rigaku Mercury2
diffractometer
2659 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2178 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.901Rint = 0.022
5954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
2659 reflectionsΔρmin = 0.21 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2635 (2)1.3033 (2)0.27180 (13)0.0379 (3)
C20.1665 (3)1.0264 (2)0.18636 (14)0.0439 (4)
C30.1029 (4)0.8280 (3)0.17603 (17)0.0617 (5)
H3A0.06290.79220.09530.093*
H3B0.00700.78400.22300.093*
H3C0.21150.77890.20300.093*
C40.2745 (2)1.1001 (2)0.49268 (13)0.0400 (4)
H40.31961.22480.49920.048*
C50.2738 (2)0.9871 (2)0.59672 (13)0.0371 (3)
C60.3299 (3)1.0685 (2)0.70682 (14)0.0487 (4)
H60.36781.19340.71420.058*
C70.3300 (3)0.9654 (3)0.80588 (15)0.0539 (5)
H70.36521.02060.87980.065*
C80.2773 (3)0.7799 (2)0.79417 (15)0.0476 (4)
C90.2227 (3)0.6970 (2)0.68453 (16)0.0514 (4)
H90.18790.57210.67720.062*
C100.2200 (3)0.8001 (2)0.58632 (15)0.0461 (4)
H100.18210.74450.51270.055*
C110.2800 (3)0.6704 (3)0.89609 (17)0.0601 (5)
N10.21505 (19)1.11995 (17)0.29285 (10)0.0362 (3)
N20.1847 (2)1.1369 (2)0.10000 (12)0.0524 (4)
N30.2429 (2)1.3038 (2)0.15394 (12)0.0485 (4)
H3D0.26471.40170.11510.058*
N40.2117 (2)1.02188 (17)0.39419 (11)0.0385 (3)
N50.2817 (3)0.5822 (3)0.97577 (16)0.0811 (6)
S10.32744 (8)1.48037 (6)0.36283 (4)0.05691 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (8)0.0381 (8)0.0336 (8)0.0090 (6)0.0012 (6)0.0115 (6)
C20.0541 (10)0.0461 (9)0.0328 (8)0.0162 (7)0.0013 (7)0.0027 (6)
C30.0905 (15)0.0456 (10)0.0494 (11)0.0217 (10)0.0072 (10)0.0044 (8)
C40.0457 (9)0.0390 (8)0.0350 (8)0.0100 (7)0.0031 (6)0.0111 (6)
C50.0366 (8)0.0433 (8)0.0325 (7)0.0115 (6)0.0048 (6)0.0131 (6)
C60.0612 (11)0.0433 (9)0.0377 (8)0.0070 (8)0.0003 (7)0.0109 (7)
C70.0647 (11)0.0623 (11)0.0325 (8)0.0130 (9)0.0007 (7)0.0134 (8)
C80.0463 (9)0.0592 (11)0.0412 (9)0.0186 (8)0.0096 (7)0.0259 (8)
C90.0628 (11)0.0426 (9)0.0525 (10)0.0180 (8)0.0112 (8)0.0191 (8)
C100.0576 (10)0.0443 (9)0.0382 (9)0.0160 (8)0.0048 (7)0.0102 (7)
C110.0646 (12)0.0709 (13)0.0517 (11)0.0264 (10)0.0144 (9)0.0305 (10)
N10.0438 (7)0.0370 (7)0.0279 (6)0.0105 (5)0.0016 (5)0.0089 (5)
N20.0719 (10)0.0542 (9)0.0308 (7)0.0172 (8)0.0013 (6)0.0065 (6)
N30.0652 (9)0.0451 (8)0.0328 (7)0.0103 (7)0.0016 (6)0.0154 (6)
N40.0465 (7)0.0389 (7)0.0312 (6)0.0125 (6)0.0041 (5)0.0136 (5)
N50.1056 (16)0.0881 (14)0.0603 (11)0.0394 (12)0.0213 (10)0.0456 (10)
S10.0794 (4)0.0363 (2)0.0488 (3)0.0070 (2)0.0080 (2)0.00552 (19)
Geometric parameters (Å, º) top
C1—N31.3420 (19)C6—C71.383 (2)
C1—N11.3887 (19)C6—H60.9300
C1—S11.6546 (17)C7—C81.382 (3)
C2—N21.296 (2)C7—H70.9300
C2—N11.384 (2)C8—C91.383 (3)
C2—C31.477 (2)C8—C111.440 (2)
C3—H3A0.9600C9—C101.377 (2)
C3—H3B0.9600C9—H90.9300
C3—H3C0.9600C10—H100.9300
C4—N41.266 (2)C11—N51.137 (2)
C4—C51.4735 (19)N1—N41.3815 (16)
C4—H40.9300N2—N31.371 (2)
C5—C61.384 (2)N3—H3D0.8600
C5—C101.391 (2)
N3—C1—N1101.52 (13)C8—C7—C6119.51 (17)
N3—C1—S1127.16 (12)C8—C7—H7120.2
N1—C1—S1131.32 (11)C6—C7—H7120.2
N2—C2—N1110.55 (15)C7—C8—C9120.50 (15)
N2—C2—C3126.08 (16)C7—C8—C11120.31 (18)
N1—C2—C3123.37 (15)C9—C8—C11119.20 (18)
C2—C3—H3A109.5C10—C9—C8119.79 (17)
C2—C3—H3B109.5C10—C9—H9120.1
H3A—C3—H3B109.5C8—C9—H9120.1
C2—C3—H3C109.5C9—C10—C5120.33 (16)
H3A—C3—H3C109.5C9—C10—H10119.8
H3B—C3—H3C109.5C5—C10—H10119.8
N4—C4—C5117.83 (15)N5—C11—C8179.2 (2)
N4—C4—H4121.1N4—N1—C2118.04 (13)
C5—C4—H4121.1N4—N1—C1133.14 (13)
C6—C5—C10119.33 (14)C2—N1—C1108.80 (13)
C6—C5—C4119.41 (15)C2—N2—N3104.07 (13)
C10—C5—C4121.26 (14)C1—N3—N2115.04 (13)
C7—C6—C5120.52 (17)C1—N3—H3D122.5
C7—C6—H6119.7N2—N3—H3D122.5
C5—C6—H6119.7C4—N4—N1120.55 (13)
N4—C4—C5—C6176.05 (15)C3—C2—N1—N42.8 (2)
N4—C4—C5—C104.7 (2)N2—C2—N1—C11.31 (19)
C10—C5—C6—C70.9 (3)C3—C2—N1—C1178.55 (17)
C4—C5—C6—C7179.80 (16)N3—C1—N1—N4177.34 (15)
C5—C6—C7—C81.3 (3)S1—C1—N1—N43.4 (3)
C6—C7—C8—C90.7 (3)N3—C1—N1—C20.99 (17)
C6—C7—C8—C11178.86 (17)S1—C1—N1—C2178.25 (13)
C7—C8—C9—C100.3 (3)N1—C2—N2—N30.99 (19)
C11—C8—C9—C10179.81 (17)C3—C2—N2—N3178.87 (18)
C8—C9—C10—C50.6 (3)N1—C1—N3—N20.42 (19)
C6—C5—C10—C90.1 (3)S1—C1—N3—N2178.87 (13)
C4—C5—C10—C9179.22 (16)C2—N2—N3—C10.3 (2)
C7—C8—C11—N5176 (100)C5—C4—N4—N1177.73 (12)
C9—C8—C11—N54 (17)C2—N1—N4—C4172.61 (15)
N2—C2—N1—N4177.30 (14)C1—N1—N4—C45.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3D···N5i0.862.112.934 (2)162
Symmetry code: (i) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC11H9N5S
Mr243.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.975 (2), 7.682 (2), 11.412 (2)
α, β, γ (°)90.262 (7), 94.328 (14), 104.713 (17)
V3)589.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.70 × 0.50 × 0.50
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.854, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
5954, 2659, 2178
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.05
No. of reflections2659
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3D···N5i0.862.112.934 (2)161.7
Symmetry code: (i) x, y+1, z1.
 

Acknowledgements

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAwad, I., Abdel-Rahman, A. & Bakite, E. (1991). J. Chem. Technol. Biotechnol. 51, 483–486.  CrossRef CAS Google Scholar
First citationEweiss, N., Bahajaj, A. & Elsherbini, E. (1986). J. Heterocycl. Chem. 23, 1451–1458.  CrossRef CAS Google Scholar
First citationGrasso, S. A. (1988). Farm. Ed. Sci. 43, 851–854.  CAS Google Scholar
First citationPillard, D. A., Cornell, J. S., Dufresne, D. L. & Hernandez, M. T. (2001). Water Res. 35, 557–560.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSharma, R. S. & Bahel, S. C. (1982). J. Indian Chem. Soc. 59, 877–879.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds